On a new discretization of complex analysis
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 1031-1050 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper develops an approach to discretization of complex analysis proposed by S. P. Novikov and the author in 2003. Under this approach discrete analytic functions are real-valued. It is shown that a large class of such functions on a lattice admits a canonical multiplication by the imaginary unit. Arbitrary lattices are considered for a triangular discretization and rhombic lattices for a quadrangular discretization. Bibliography: 24 titles.
Keywords: discrete analytic functions, discrete holomorphic functions, discretization of complex analysis.
@article{RM_2015_70_6_a1,
     author = {I. A. Dynnikov},
     title = {On a new discretization of complex analysis},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1031--1050},
     year = {2015},
     volume = {70},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_6_a1/}
}
TY  - JOUR
AU  - I. A. Dynnikov
TI  - On a new discretization of complex analysis
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 1031
EP  - 1050
VL  - 70
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_6_a1/
LA  - en
ID  - RM_2015_70_6_a1
ER  - 
%0 Journal Article
%A I. A. Dynnikov
%T On a new discretization of complex analysis
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 1031-1050
%V 70
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2015_70_6_a1/
%G en
%F RM_2015_70_6_a1
I. A. Dynnikov. On a new discretization of complex analysis. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 1031-1050. http://geodesic.mathdoc.fr/item/RM_2015_70_6_a1/

[1] I. A. Dynnikov, S. P. Novikov, “Geometry of the triangle equation on two-manifolds”, Mosc. Math. J., 3:2 (2003), 419–438 | MR | Zbl

[2] S. P. Novikov, “Difference analogs of Laplace transformations and two-dimensional Toda lattices”, Appendix I in: S. P. Novikov, A. P. Veselov “Exactly solvable 2-dimensional Schrödinger operators and Laplace transformations”, Solitons, geometry and topology: on the crossroads, Amer. Math. Soc. Transl. Ser. 2, 179, eds. V. M. Buchstaber, S. P. Novikov, Amer. Math. Soc., Providence, RI, 1997, 124–126 | MR | Zbl

[3] S. P. Novikov, “Algebraic properties of two-dimensional difference operators”, Russian Math. Surveys, 52:1 (1997), 226–227 | DOI | DOI | MR | Zbl

[4] I. A. Dynnikov, S. P. Novikov, “Laplace transforms and simplicial connections”, Russian Math. Surveys, 52:6 (1997), 1294–1295 | DOI | DOI | MR | Zbl

[5] S. P. Novikov, I. A. Dynnikov, “Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1057–1116 | DOI | DOI | MR | Zbl

[6] J. Ferrand, “Fonctions préharmoniques et fonctions préholomorphes”, Bull. Sci. Math. (2), 68 (1944), 152–180 | MR | Zbl

[7] R. P. Isaacs, “A finite difference function theory”, Univ. Nac. Tucumán. Revista A, 2 (1941), 177–201 | MR | Zbl

[8] R. J. Duffin, “Basic properties of discrete analytic functions”, Duke Math. J., 23:2 (1956), 335–363 | DOI | MR | Zbl

[9] Ch. Mercat, “Discrete Riemann surfaces and the Ising model”, Comm. Math. Phys., 218:1 (2001), 177–216 | DOI | MR | Zbl

[10] S. Smirnov, “Discrete complex analysis and probability”, Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (Hyderabad, India, August 19–27, 2010), v. I, Hindustan Book Agency, New Delhi, 2011, 595–621 | MR | Zbl

[11] R. J. Duffin, “Potential theory on a rhombic lattice”, J. Combin. Theory, 5:3 (1968), 258–272 | DOI | MR | Zbl

[12] R. Kenyon, “The Laplacian and Dirac operators on critical planar graphs”, Invent. Math., 150:2 (2002), 409–439 | DOI | MR | Zbl

[13] R. Kenyon, J.-M. Schlenker, “Rhombic embeddings of planar quad-graphs”, Trans. Amer. Math. Soc., 357:9 (2005), 3443–3458 | DOI | MR | Zbl

[14] Ch. Mercat, “Discrete Riemann surfaces”, Handbook of Teichmüller theory, v. I, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007, 541–575 | DOI | MR | Zbl

[15] D. Chelkak, S. Smirnov, “Discrete complex analysis on isoradial graphs”, Adv. Math., 228:3 (2011), 1590–1630 | DOI | MR | Zbl

[16] A. Bobenko, M. Skopenkov, “Discrete Riemann surfaces: linear discretization and its convergence”, 2012 (v2 – 2013), 27 pp., arXiv: 1210.0561

[17] N. P. Dolbilin, M. A. Shtan'ko, M. I. Shtogrin, “Cubic subcomplexes in regular lattices”, Soviet Math. Dokl., 34:3 (1987), 467–469 | MR | Zbl

[18] N. P. Dolbilin, M. A. Shtan'ko, M. I. Shtogrin, “Quadrillages and parametrizations of lattice cycles”, Proc. Steklov Inst. Math., 193 (1993), 117–123 | MR | Zbl

[19] L. Lusternik, “Über einige Anwendungen der direkten Methoden in Variationsrechnung”, Matem. sb., 33:2 (1926), 173–201 | Zbl

[20] W. P. Thurston, “Zippers and univalent functions”, The Bieberbach conjecture (West Lafayette, IN, 1985), Math. Surveys Monogr., 21, Amer. Math. Soc., Providence, RI, 1986, 185–197 | DOI | MR | Zbl

[21] A. Bobenko, Ch. Mercat, Yu. B. Suris, “Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green's function”, J. Reine Angew. Math., 2005:583 (2005), 117–161 | DOI | MR | Zbl

[22] S. P. Novikov, “New discretization of complex analysis: the Euclidean and hyperbolic planes”, Proc. Steklov Inst. Math., 273 (2011), 238–251 | DOI | MR | Zbl

[23] P. G. Grinevich, R. G. Novikov, “The Cauchy kernel for the Novikov–Dynnikov DN-discrete complex analysis in triangular lattices”, Russian Math. Surveys, 62:4 (2007), 799–801 | DOI | DOI | MR | Zbl

[24] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., Boston, MA, 1994, x+523 pp. | DOI | MR | Zbl