@article{RM_2015_70_6_a1,
author = {I. A. Dynnikov},
title = {On a new discretization of complex analysis},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1031--1050},
year = {2015},
volume = {70},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_6_a1/}
}
I. A. Dynnikov. On a new discretization of complex analysis. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 1031-1050. http://geodesic.mathdoc.fr/item/RM_2015_70_6_a1/
[1] I. A. Dynnikov, S. P. Novikov, “Geometry of the triangle equation on two-manifolds”, Mosc. Math. J., 3:2 (2003), 419–438 | MR | Zbl
[2] S. P. Novikov, “Difference analogs of Laplace transformations and two-dimensional Toda lattices”, Appendix I in: S. P. Novikov, A. P. Veselov “Exactly solvable 2-dimensional Schrödinger operators and Laplace transformations”, Solitons, geometry and topology: on the crossroads, Amer. Math. Soc. Transl. Ser. 2, 179, eds. V. M. Buchstaber, S. P. Novikov, Amer. Math. Soc., Providence, RI, 1997, 124–126 | MR | Zbl
[3] S. P. Novikov, “Algebraic properties of two-dimensional difference operators”, Russian Math. Surveys, 52:1 (1997), 226–227 | DOI | DOI | MR | Zbl
[4] I. A. Dynnikov, S. P. Novikov, “Laplace transforms and simplicial connections”, Russian Math. Surveys, 52:6 (1997), 1294–1295 | DOI | DOI | MR | Zbl
[5] S. P. Novikov, I. A. Dynnikov, “Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1057–1116 | DOI | DOI | MR | Zbl
[6] J. Ferrand, “Fonctions préharmoniques et fonctions préholomorphes”, Bull. Sci. Math. (2), 68 (1944), 152–180 | MR | Zbl
[7] R. P. Isaacs, “A finite difference function theory”, Univ. Nac. Tucumán. Revista A, 2 (1941), 177–201 | MR | Zbl
[8] R. J. Duffin, “Basic properties of discrete analytic functions”, Duke Math. J., 23:2 (1956), 335–363 | DOI | MR | Zbl
[9] Ch. Mercat, “Discrete Riemann surfaces and the Ising model”, Comm. Math. Phys., 218:1 (2001), 177–216 | DOI | MR | Zbl
[10] S. Smirnov, “Discrete complex analysis and probability”, Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (Hyderabad, India, August 19–27, 2010), v. I, Hindustan Book Agency, New Delhi, 2011, 595–621 | MR | Zbl
[11] R. J. Duffin, “Potential theory on a rhombic lattice”, J. Combin. Theory, 5:3 (1968), 258–272 | DOI | MR | Zbl
[12] R. Kenyon, “The Laplacian and Dirac operators on critical planar graphs”, Invent. Math., 150:2 (2002), 409–439 | DOI | MR | Zbl
[13] R. Kenyon, J.-M. Schlenker, “Rhombic embeddings of planar quad-graphs”, Trans. Amer. Math. Soc., 357:9 (2005), 3443–3458 | DOI | MR | Zbl
[14] Ch. Mercat, “Discrete Riemann surfaces”, Handbook of Teichmüller theory, v. I, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007, 541–575 | DOI | MR | Zbl
[15] D. Chelkak, S. Smirnov, “Discrete complex analysis on isoradial graphs”, Adv. Math., 228:3 (2011), 1590–1630 | DOI | MR | Zbl
[16] A. Bobenko, M. Skopenkov, “Discrete Riemann surfaces: linear discretization and its convergence”, 2012 (v2 – 2013), 27 pp., arXiv: 1210.0561
[17] N. P. Dolbilin, M. A. Shtan'ko, M. I. Shtogrin, “Cubic subcomplexes in regular lattices”, Soviet Math. Dokl., 34:3 (1987), 467–469 | MR | Zbl
[18] N. P. Dolbilin, M. A. Shtan'ko, M. I. Shtogrin, “Quadrillages and parametrizations of lattice cycles”, Proc. Steklov Inst. Math., 193 (1993), 117–123 | MR | Zbl
[19] L. Lusternik, “Über einige Anwendungen der direkten Methoden in Variationsrechnung”, Matem. sb., 33:2 (1926), 173–201 | Zbl
[20] W. P. Thurston, “Zippers and univalent functions”, The Bieberbach conjecture (West Lafayette, IN, 1985), Math. Surveys Monogr., 21, Amer. Math. Soc., Providence, RI, 1986, 185–197 | DOI | MR | Zbl
[21] A. Bobenko, Ch. Mercat, Yu. B. Suris, “Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green's function”, J. Reine Angew. Math., 2005:583 (2005), 117–161 | DOI | MR | Zbl
[22] S. P. Novikov, “New discretization of complex analysis: the Euclidean and hyperbolic planes”, Proc. Steklov Inst. Math., 273 (2011), 238–251 | DOI | MR | Zbl
[23] P. G. Grinevich, R. G. Novikov, “The Cauchy kernel for the Novikov–Dynnikov DN-discrete complex analysis in triangular lattices”, Russian Math. Surveys, 62:4 (2007), 799–801 | DOI | DOI | MR | Zbl
[24] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., Boston, MA, 1994, x+523 pp. | DOI | MR | Zbl