The anti-integrable limit
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 975-1030

Voir la notice de l'article provenant de la source Math-Net.Ru

The anti-integrable limit is one of the convenient and relatively simple methods for the construction of chaotic hyperbolic invariant sets in Lagrangian, Hamiltonian, and other dynamical systems. This survey discusses the most natural context of the method, namely, discrete Lagrangian systems, and then presents examples and applications. Bibliography: 75 titles.
Keywords: Lagrangian systems, Hamiltonian systems, hyperbolic sets, topological Markov chain, topological entropy.
Mots-clés : chaos
@article{RM_2015_70_6_a0,
     author = {S. V. Bolotin and D. V. Treschev},
     title = {The anti-integrable limit},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {975--1030},
     publisher = {mathdoc},
     volume = {70},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_6_a0/}
}
TY  - JOUR
AU  - S. V. Bolotin
AU  - D. V. Treschev
TI  - The anti-integrable limit
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 975
EP  - 1030
VL  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_6_a0/
LA  - en
ID  - RM_2015_70_6_a0
ER  - 
%0 Journal Article
%A S. V. Bolotin
%A D. V. Treschev
%T The anti-integrable limit
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 975-1030
%V 70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2015_70_6_a0/
%G en
%F RM_2015_70_6_a0
S. V. Bolotin; D. V. Treschev. The anti-integrable limit. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 975-1030. http://geodesic.mathdoc.fr/item/RM_2015_70_6_a0/