The anti-integrable limit
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 975-1030 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The anti-integrable limit is one of the convenient and relatively simple methods for the construction of chaotic hyperbolic invariant sets in Lagrangian, Hamiltonian, and other dynamical systems. This survey discusses the most natural context of the method, namely, discrete Lagrangian systems, and then presents examples and applications. Bibliography: 75 titles.
Keywords: Lagrangian systems, Hamiltonian systems, hyperbolic sets, topological Markov chain, topological entropy.
Mots-clés : chaos
@article{RM_2015_70_6_a0,
     author = {S. V. Bolotin and D. V. Treschev},
     title = {The anti-integrable limit},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {975--1030},
     year = {2015},
     volume = {70},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_6_a0/}
}
TY  - JOUR
AU  - S. V. Bolotin
AU  - D. V. Treschev
TI  - The anti-integrable limit
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 975
EP  - 1030
VL  - 70
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_6_a0/
LA  - en
ID  - RM_2015_70_6_a0
ER  - 
%0 Journal Article
%A S. V. Bolotin
%A D. V. Treschev
%T The anti-integrable limit
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 975-1030
%V 70
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2015_70_6_a0/
%G en
%F RM_2015_70_6_a0
S. V. Bolotin; D. V. Treschev. The anti-integrable limit. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 975-1030. http://geodesic.mathdoc.fr/item/RM_2015_70_6_a0/

[1] V. S. Afraĭmovich, L. P. Shil'nikov, “On small periodic perturbations of autonomous systems”, Soviet Math. Dokl., 15 (1974), 206–211 ; “II. РћРґРЅРѕРјРμСЂРЅС‹Рμ РЅРμлинРμРNoРЅС‹Рμ РєРѕР»Рμбания РІ РїРμСЂРёРѕРґРёС‡РμСЃРєРё возмущаРμРјРѕРј РїРѕР»Рμ”, 77(119):4 (1968), 545–601 ; “III. КвазислучаРNoРЅС‹Рμ РєРѕР»Рμбания РѕРґРЅРѕРјРμСЂРЅС‹С... осцилляторов”, 78(120):1 (1969), 3–50 | MR | Zbl | MR | Zbl | MR | Zbl

[2] V. M. Alekseev, “Quasirandom dynamical systems. I. Quasirandom diffeomorphisms”, Math. USSR-Sb., 5:1 (1968), 73–128 ; “II. One-dimensional nonlinear oscillations in a field with periodic perturbation”, Math. USSR-Sb., 6:4 (1968), 505–560 ; “III. Quasirandom oscillations of one-dimensional oscillators”, Math. USSR-Sb., 7:1 (1969), 1–43 | DOI | DOI | DOI | MR | MR | MR | Zbl | Zbl | Zbl

[3] V. I. Arnol'd, “Instability of dynamical systems with several degrees of freedom”, Soviet Math. Dokl., 5 (1964), 581–585 | MR | Zbl

[4] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York, 1978, xvi+462 pp. | DOI | MR | MR | Zbl | Zbl

[5] V. I. Arnol'd, V. V. Kozlov, A. I. Neĭshtadt, “Mathematical aspects of classical and celestial mechanics”, Dynamical systems, III, Encyclopaedia Math. Sci., 3, Springer-Verlag, Berlin, 1988, 1–291 | MR | MR | Zbl

[6] S. Aubry, G. Abramovici, “Chaotic trajectories in the standard map. The concept of anti-integrability”, Phys. D, 43:2-3 (1990), 199–219 | DOI | MR | Zbl

[7] S. Aubry, R. S. MacKay, C. Baesens, “Equivalence of uniform hyperbolicity for symplectic twist maps and phonon gap for Frenkel–Kontorova models”, Phys. D, 56:2-3 (1992), 123–134 | DOI | MR | Zbl

[8] C. Baesens, Y.-C. Chen, R. S. MacKay, “Abrupt bifurcations in chaotic scattering: view from the anti-integrable limit”, Nonlinearity, 26:9 (2013), 2703–2730 | DOI | MR | Zbl

[9] M. Berti, P. Bolle, “A functional analysis approach to Arnold diffusion”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19:4 (2002), 395–450 | DOI | MR | Zbl

[10] M. Berti, L. Biasco, P. Bolle, “Drift in phase space: a new variational mechanism with optimal diffusion time”, J. Math. Pures Appl. (9), 82:6 (2003), 613–664 | DOI | MR | Zbl

[11] U. Bessi, “An approach to Arnold's diffusion through the calculus of variations”, Nonlinear Anal., 26:6 (1996), 1115–1135 | DOI | MR | Zbl

[12] M. Bialy, “Maximizing orbits for higher-dimensional convex billiards”, J. Mod. Dyn., 3:1 (2009), 51–59 | DOI | MR | Zbl

[13] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl

[14] S. V. Bolotin, “Librations of natural dynamic systems”, Mosc. Univ. Mech. Bull., 33:5-6 (1978), 49–53 | MR | Zbl

[15] S. V. Bolotin, “Symbolic dynamics near minimal hyperbolic invariant tori of Lagrangian systems”, Nonlinearity, 14:5 (2001), 1123–1140 | DOI | MR | Zbl

[16] S. V. Bolotin, “Shadowing chains of collision orbits”, Discrete Contin. Dyn. Syst., 14:2 (2006), 235–260 | DOI | MR | Zbl

[17] S. Bolotin, “Symbolic dynamics of almost collision orbits and skew products of symplectic maps”, Nonlinearity, 19:9 (2006), 2041–2063 | DOI | MR | Zbl

[18] S. Bolotin, R. MacKay, “Multibump orbits near the anti-integrable limit for Lagrangian systems”, Nonlinearity, 10:5 (1997), 1015–1029 | DOI | MR | Zbl

[19] S. V. Bolotin, R. S. MacKay, “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celestial Mech. Dynam. Astronom., 77:1 (2000), 49–75 | DOI | MR | Zbl

[20] S. Bolotin, R. S. MacKay, “Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem”, Celestial Mech. Dynam. Astronom., 94:4 (2006), 433–449 | DOI | MR | Zbl

[21] S. V. Bolotin, P. Negrini, “Global regularization for the $n$-center problem on a manifold”, Discrete Contin. Dyn. Syst., 8:4 (2002), 873–892 | DOI | MR | Zbl

[22] S. V. Bolotin, P. Negrini, “Variational approach to second species periodic solutions of Poincaré of the 3 body problem”, Discrete Contin. Dyn. Syst., 33:3 (2013), 1009–1032 | DOI | MR | Zbl

[23] S. Bolotin, P. Negrini, “Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system”, Regul. Chaotic Dyn., 18:6 (2013), 774–800 | DOI | MR | Zbl

[24] S. V. Bolotin, P. H. Rabinowitz, “A variational construction of chaotic trajectories for a reversible Hamiltonian system”, J. Differential Equations, 148:2 (1998), 364–387 | DOI | MR | Zbl

[25] S. V. Bolotin, D. V. Treschev, “Remarks on the definition of hyperbolic tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:4 (2000), 401–412 | DOI | MR | Zbl

[26] A. Bounemoura, E. Pennamen, “Instability for a priori unstable Hamiltonian systems: a dynamical approach”, Discrete Contin. Dyn. Syst., 32:3 (2012), 753–793 | DOI | MR | Zbl

[27] B. Buffoni, E. Séré, “A global condition for quasi-random behavior in a class of conservative systems”, Comm. Pure Appl. Math., 49:3 (1996), 285–305 | 3.0.CO;2-9 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[28] L. A. Bunimovich, Ya. G. Sinai, N. I. Chernov, “Statistical properties of two-dimensional hyperbolic billiards”, Russian Math. Surveys, 46:4 (1991), 47–106 | DOI | MR | Zbl

[29] O. Castejón, V. Kaloshin, Random iteration of maps on a cylinder and diffusive behavior, 2015, 75 pp. \par http://www.math.umd.edu/~vkaloshi/papers/random-iteration.pdf

[30] Y.-C. Chen, “Anti-integrability in scattering billiards”, Dyn. Syst., 19:2 (2004), 145–159 | DOI | MR | Zbl

[31] Y.-C. Chen, “On topological entropy of billiard tables with small inner scatterers”, Adv. Math., 224:2 (2010), 432–460 | DOI | MR | Zbl

[32] C.-Q. Cheng, J. Yan, “Existence of diffusion orbits in a priori unstable Hamiltonian systems”, J. Differential Geom., 67:3 (2004), 457–517 | MR | Zbl

[33] C.-Q. Cheng, J. Yan, “Arnold diffusion in Hamiltonian systems: a priori unstable case”, J. Differential Geom., 82:2 (2009), 229–277 | MR | Zbl

[34] L. Chierchia, G. Gallavotti, “Drift and diffusion in phase space”, Ann. Inst. H. Poincaré Phys. Théor., 60:1 (1994), 1–144 | MR | Zbl

[35] A. Delshams, R. de la Llave, T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model, Mem. Amer. Math. Soc., 179, No 844, Amer. Math. Soc., Providence, RI, 2006, viii+141 pp. | DOI | MR | Zbl

[36] A. Delshams, R. de la Llave, T. M. Seara, “Geometric properties of the scattering map of a normally hyperbolic invariant manifold”, Adv. Math., 217:3 (2008), 1096–1153 | DOI | MR | Zbl

[37] A. Delshams, G. Huguet, “Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems”, Nonlinearity, 22:8 (2009), 1997–2077 | DOI | MR | Zbl

[38] A. Delshams, G. Huguet, “A geometric mechanism of diffusion: rigorous verification in a priori unstable Hamiltonian systems”, J. Differential Equations, 250:5 (2011), 2601–2623 | DOI | MR | Zbl

[39] Bo Deng, “The Šil'nikov problem, exponential expansion, strong $\lambda$-lemma, $C^1$-linearization, and homoclinic bifurcation”, J. Differential Equations, 79:2 (1989), 189–231 | DOI | MR | Zbl

[40] R. L. Devaney, “Homoclinic orbits in Hamiltonian systems”, J. Differential Equations, 21:2 (1976), 431–438 | DOI | MR | Zbl

[41] P. Duarte, “Plenty of elliptic islands for the standard family of area preserving maps”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11:4 (1994), 359–409 | MR | Zbl

[42] R. W. Easton, J. D. Meiss, G. Roberts, “Drift by coupling to an anti-integrable limit”, Phys. D, 156:3-4 (2001), 201–218 | DOI | MR | Zbl

[43] E. Fontich, P. Martín, “Arnold diffusion in perturbations of analytic integrable Hamiltonian systems”, Discrete Contin. Dyn. Syst., 7:1 (2001), 61–84 | MR | Zbl

[44] G. Gallavotti, G. Gentile, V. Mastropietro, “Hamilton–Jacobi equation, heteroclinic chains and Arnol'd diffusion in three time scale systems”, Nonlinearity, 13:2 (2000), 323–340 | DOI | MR | Zbl

[45] V. Gelfreich, D. Turaev, “Unbounded energy growth in Hamiltonian systems with a slowly varying parameter”, Comm. Math. Phys., 283:3 (2008), 769–794 | DOI | MR | Zbl

[46] M. Gidea, C. Robinson, “Diffusion along transition chains of invariant tori and Aubry–Mather sets”, Ergodic Theory Dynam. Systems, 33:5 (2013), 1401–1449 | DOI | MR | Zbl

[47] C. Golé, Symplectic twist maps. Global variational techniques, Adv. Ser. Nonlinear Dynam., 18, World Scientific Publishing Co., Inc., River Edge, NJ, 2001, xviii+305 pp. | MR | Zbl

[48] M. Guardia, V. Kaloshin, J. Zhang, A second order expansion of the separatrix map for trigonometric perturbations of a priori unstable systems, 2015, 50 pp., arXiv: 1503.08301v2

[49] V. Kaloshin, M. Levi, “Geometry of Arnold diffusion”, SIAM Rev., 50:4 (2008), 702–720 | DOI | MR | Zbl

[50] V. Kaloshin, Ke Zhang, Dynamics of the dominant Hamiltonian, with applications to Arnold diffusion, 2014 (v2 – 2015), 84 pp., arXiv: 1410.1844

[51] V. Kaloshin, Jianlu Zhang, Ke Zhang, Normally hyperbolic invariant laminations and diffusive behaviour for the generalized Arnold example away from resonances, 2015, 85 pp., arXiv: 1511.04835

[52] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[53] M. Klein, A. Knauf, Classical planar scattering by Coulombic potentials, Lecture Notes in Phys. New Ser. Monogr., M13, Springer-Verlag, Berlin, 1992, v+142 pp. | DOI | Zbl

[54] O. Knill, “Topological entropy of standard type monotone twist maps”, Trans. Amer. Math. Soc., 348:8 (1996), 2999–3013 | DOI | MR | Zbl

[55] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl

[56] L. M. Lerman, “Complex dynamics and bifurcations in a Hamiltonian system having a transversal homoclinic orbit to a saddle focus”, Chaos, 1:2 (1991), 174–180 | DOI | MR | Zbl

[57] R. S. MacKay, J. D. Meiss, “Cantori for symplectic maps near the anti-integrable limit”, Nonlinearity, 5:1 (1992), 149–160 | DOI | MR | Zbl

[58] J. N. Mather, “Existence of quasi-periodic orbits for twist homeomorphisms of the annulus”, Topology, 21:4 (1982), 457–467 | DOI | MR | Zbl

[59] D. McDuff, D. Salamon, Introduction to symplectic topology, Oxford Math. Monogr., 2nd ed., The Clarendon Press, Oxford Univ. Press, New York, 1998, x+486 pp. | MR | Zbl

[60] Z. Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, The M.I.T. Press, Cambridge, MA–London, 1971, xv+282 pp. | MR | Zbl

[61] G. N. Piftankin, “Diffusion speed in the Mather problem”, Nonlinearity, 19:11 (2006), 2617–2644 | DOI | MR | Zbl

[62] G. N. Piftankin, D. V. Treschev, “Separatrix map in Hamiltonian systems”, Russian Math. Surveys, 62:2 (2007), 219–322 | DOI | DOI | MR | Zbl

[63] L. P. Shilnikov, “On a Poincaré–Birkhoff problem”, Math. USSR-Sb., 3:3 (1967), 353–371 | DOI | MR | Zbl

[64] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of qualitative theory in nonlinear dynamics. Part II, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 5, World Scientific Publishing Co., Inc., River Edge, NJ, 2001, xxiii+565 pp. | DOI | MR | Zbl

[65] S. Smale, “Diffeomorphisms with many periodic points”, Differential and combinatorial topology, A symposium in honor of M. Morse, Princeton Univ. Press, Princeton, N.J., 1965, 63–80 | MR | Zbl

[66] D. Treschev, “Multidimensional symplectic separatrix maps”, J. Nonlinear Sci., 12:1 (2002), 27–58 | DOI | MR | Zbl

[67] D. Treschev, “Trajectories in a neighbourhood of asymptotic surfaces of a priori unstable Hamiltonian systems”, Nonlinearity, 15:6 (2002), 2033–2052 | DOI | MR | Zbl

[68] D. Treschev, “Evolution of slow variables in a priori unstable Hamiltonian systems”, Nonlinearity, 17:5 (2004), 1803–1841 | DOI | MR | Zbl

[69] D. Treschev, “Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems”, Nonlinearity, 25:9 (2012), 2717–2757 | DOI | MR | Zbl

[70] D. Treschev, O. Zubelevich, Introduction to the perturbation theory of Hamiltonian systems, Springer Monogr. Math., Springer-Verlag, Berlin, 2010, x+211 pp. | DOI | MR | Zbl

[71] D. Turaev, “Hyperbolic sets near homoclinic loops to a saddle for systems with a first integral”, Regul. Chaotic Dyn., 19:6 (2014), 681–693 | DOI | MR | Zbl

[72] D. V. Turaev, L. P. Shilnikov, “On Hamiltonian systems with homoclinic saddle curves”, Soviet Math. Dokl., 39:1 (1989), 165–168 | MR | Zbl

[73] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno-vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR | Zbl

[74] A. P. Veselov, “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51 | DOI | MR | Zbl

[75] P. Walters, An introduction to ergodic theory, Grad. Texts in Math., 79, Springer-Verlag, New York–Berlin, 1982, ix+250 pp. | DOI | MR | Zbl