The anti-integrable limit
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 975-1030
Voir la notice de l'article provenant de la source Math-Net.Ru
The anti-integrable limit is one of the convenient and relatively simple methods for the construction of chaotic hyperbolic invariant sets in Lagrangian, Hamiltonian, and other dynamical systems. This survey discusses the most natural context of the method, namely, discrete Lagrangian systems, and then presents examples and applications.
Bibliography: 75 titles.
Keywords:
Lagrangian systems, Hamiltonian systems, hyperbolic sets, topological Markov chain, topological entropy.
Mots-clés : chaos
Mots-clés : chaos
@article{RM_2015_70_6_a0,
author = {S. V. Bolotin and D. V. Treschev},
title = {The anti-integrable limit},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {975--1030},
publisher = {mathdoc},
volume = {70},
number = {6},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_6_a0/}
}
S. V. Bolotin; D. V. Treschev. The anti-integrable limit. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 975-1030. http://geodesic.mathdoc.fr/item/RM_2015_70_6_a0/