Mots-clés : chaos
@article{RM_2015_70_6_a0,
author = {S. V. Bolotin and D. V. Treschev},
title = {The anti-integrable limit},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {975--1030},
year = {2015},
volume = {70},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_6_a0/}
}
S. V. Bolotin; D. V. Treschev. The anti-integrable limit. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 975-1030. http://geodesic.mathdoc.fr/item/RM_2015_70_6_a0/
[1] V. S. Afraĭmovich, L. P. Shil'nikov, “On small periodic perturbations of autonomous systems”, Soviet Math. Dokl., 15 (1974), 206–211 ; “II. РћРґРЅРѕРјРμСЂРЅС‹Рμ РЅРμлинРμРNoРЅС‹Рμ РєРѕР»Рμбания РІ РїРμСЂРёРѕРґРёС‡РμСЃРєРё возмущаРμРјРѕРј РїРѕР»Рμ”, 77(119):4 (1968), 545–601 ; “III. КвазислучаРNoРЅС‹Рμ РєРѕР»Рμбания РѕРґРЅРѕРјРμСЂРЅС‹С... осцилляторов”, 78(120):1 (1969), 3–50 | MR | Zbl | MR | Zbl | MR | Zbl
[2] V. M. Alekseev, “Quasirandom dynamical systems. I. Quasirandom diffeomorphisms”, Math. USSR-Sb., 5:1 (1968), 73–128 ; “II. One-dimensional nonlinear oscillations in a field with periodic perturbation”, Math. USSR-Sb., 6:4 (1968), 505–560 ; “III. Quasirandom oscillations of one-dimensional oscillators”, Math. USSR-Sb., 7:1 (1969), 1–43 | DOI | DOI | DOI | MR | MR | MR | Zbl | Zbl | Zbl
[3] V. I. Arnol'd, “Instability of dynamical systems with several degrees of freedom”, Soviet Math. Dokl., 5 (1964), 581–585 | MR | Zbl
[4] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York, 1978, xvi+462 pp. | DOI | MR | MR | Zbl | Zbl
[5] V. I. Arnol'd, V. V. Kozlov, A. I. Neĭshtadt, “Mathematical aspects of classical and celestial mechanics”, Dynamical systems, III, Encyclopaedia Math. Sci., 3, Springer-Verlag, Berlin, 1988, 1–291 | MR | MR | Zbl
[6] S. Aubry, G. Abramovici, “Chaotic trajectories in the standard map. The concept of anti-integrability”, Phys. D, 43:2-3 (1990), 199–219 | DOI | MR | Zbl
[7] S. Aubry, R. S. MacKay, C. Baesens, “Equivalence of uniform hyperbolicity for symplectic twist maps and phonon gap for Frenkel–Kontorova models”, Phys. D, 56:2-3 (1992), 123–134 | DOI | MR | Zbl
[8] C. Baesens, Y.-C. Chen, R. S. MacKay, “Abrupt bifurcations in chaotic scattering: view from the anti-integrable limit”, Nonlinearity, 26:9 (2013), 2703–2730 | DOI | MR | Zbl
[9] M. Berti, P. Bolle, “A functional analysis approach to Arnold diffusion”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19:4 (2002), 395–450 | DOI | MR | Zbl
[10] M. Berti, L. Biasco, P. Bolle, “Drift in phase space: a new variational mechanism with optimal diffusion time”, J. Math. Pures Appl. (9), 82:6 (2003), 613–664 | DOI | MR | Zbl
[11] U. Bessi, “An approach to Arnold's diffusion through the calculus of variations”, Nonlinear Anal., 26:6 (1996), 1115–1135 | DOI | MR | Zbl
[12] M. Bialy, “Maximizing orbits for higher-dimensional convex billiards”, J. Mod. Dyn., 3:1 (2009), 51–59 | DOI | MR | Zbl
[13] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl
[14] S. V. Bolotin, “Librations of natural dynamic systems”, Mosc. Univ. Mech. Bull., 33:5-6 (1978), 49–53 | MR | Zbl
[15] S. V. Bolotin, “Symbolic dynamics near minimal hyperbolic invariant tori of Lagrangian systems”, Nonlinearity, 14:5 (2001), 1123–1140 | DOI | MR | Zbl
[16] S. V. Bolotin, “Shadowing chains of collision orbits”, Discrete Contin. Dyn. Syst., 14:2 (2006), 235–260 | DOI | MR | Zbl
[17] S. Bolotin, “Symbolic dynamics of almost collision orbits and skew products of symplectic maps”, Nonlinearity, 19:9 (2006), 2041–2063 | DOI | MR | Zbl
[18] S. Bolotin, R. MacKay, “Multibump orbits near the anti-integrable limit for Lagrangian systems”, Nonlinearity, 10:5 (1997), 1015–1029 | DOI | MR | Zbl
[19] S. V. Bolotin, R. S. MacKay, “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celestial Mech. Dynam. Astronom., 77:1 (2000), 49–75 | DOI | MR | Zbl
[20] S. Bolotin, R. S. MacKay, “Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem”, Celestial Mech. Dynam. Astronom., 94:4 (2006), 433–449 | DOI | MR | Zbl
[21] S. V. Bolotin, P. Negrini, “Global regularization for the $n$-center problem on a manifold”, Discrete Contin. Dyn. Syst., 8:4 (2002), 873–892 | DOI | MR | Zbl
[22] S. V. Bolotin, P. Negrini, “Variational approach to second species periodic solutions of Poincaré of the 3 body problem”, Discrete Contin. Dyn. Syst., 33:3 (2013), 1009–1032 | DOI | MR | Zbl
[23] S. Bolotin, P. Negrini, “Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system”, Regul. Chaotic Dyn., 18:6 (2013), 774–800 | DOI | MR | Zbl
[24] S. V. Bolotin, P. H. Rabinowitz, “A variational construction of chaotic trajectories for a reversible Hamiltonian system”, J. Differential Equations, 148:2 (1998), 364–387 | DOI | MR | Zbl
[25] S. V. Bolotin, D. V. Treschev, “Remarks on the definition of hyperbolic tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:4 (2000), 401–412 | DOI | MR | Zbl
[26] A. Bounemoura, E. Pennamen, “Instability for a priori unstable Hamiltonian systems: a dynamical approach”, Discrete Contin. Dyn. Syst., 32:3 (2012), 753–793 | DOI | MR | Zbl
[27] B. Buffoni, E. Séré, “A global condition for quasi-random behavior in a class of conservative systems”, Comm. Pure Appl. Math., 49:3 (1996), 285–305 | 3.0.CO;2-9 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[28] L. A. Bunimovich, Ya. G. Sinai, N. I. Chernov, “Statistical properties of two-dimensional hyperbolic billiards”, Russian Math. Surveys, 46:4 (1991), 47–106 | DOI | MR | Zbl
[29] O. Castejón, V. Kaloshin, Random iteration of maps on a cylinder and diffusive behavior, 2015, 75 pp. \par http://www.math.umd.edu/~vkaloshi/papers/random-iteration.pdf
[30] Y.-C. Chen, “Anti-integrability in scattering billiards”, Dyn. Syst., 19:2 (2004), 145–159 | DOI | MR | Zbl
[31] Y.-C. Chen, “On topological entropy of billiard tables with small inner scatterers”, Adv. Math., 224:2 (2010), 432–460 | DOI | MR | Zbl
[32] C.-Q. Cheng, J. Yan, “Existence of diffusion orbits in a priori unstable Hamiltonian systems”, J. Differential Geom., 67:3 (2004), 457–517 | MR | Zbl
[33] C.-Q. Cheng, J. Yan, “Arnold diffusion in Hamiltonian systems: a priori unstable case”, J. Differential Geom., 82:2 (2009), 229–277 | MR | Zbl
[34] L. Chierchia, G. Gallavotti, “Drift and diffusion in phase space”, Ann. Inst. H. Poincaré Phys. Théor., 60:1 (1994), 1–144 | MR | Zbl
[35] A. Delshams, R. de la Llave, T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model, Mem. Amer. Math. Soc., 179, No 844, Amer. Math. Soc., Providence, RI, 2006, viii+141 pp. | DOI | MR | Zbl
[36] A. Delshams, R. de la Llave, T. M. Seara, “Geometric properties of the scattering map of a normally hyperbolic invariant manifold”, Adv. Math., 217:3 (2008), 1096–1153 | DOI | MR | Zbl
[37] A. Delshams, G. Huguet, “Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems”, Nonlinearity, 22:8 (2009), 1997–2077 | DOI | MR | Zbl
[38] A. Delshams, G. Huguet, “A geometric mechanism of diffusion: rigorous verification in a priori unstable Hamiltonian systems”, J. Differential Equations, 250:5 (2011), 2601–2623 | DOI | MR | Zbl
[39] Bo Deng, “The Šil'nikov problem, exponential expansion, strong $\lambda$-lemma, $C^1$-linearization, and homoclinic bifurcation”, J. Differential Equations, 79:2 (1989), 189–231 | DOI | MR | Zbl
[40] R. L. Devaney, “Homoclinic orbits in Hamiltonian systems”, J. Differential Equations, 21:2 (1976), 431–438 | DOI | MR | Zbl
[41] P. Duarte, “Plenty of elliptic islands for the standard family of area preserving maps”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11:4 (1994), 359–409 | MR | Zbl
[42] R. W. Easton, J. D. Meiss, G. Roberts, “Drift by coupling to an anti-integrable limit”, Phys. D, 156:3-4 (2001), 201–218 | DOI | MR | Zbl
[43] E. Fontich, P. Martín, “Arnold diffusion in perturbations of analytic integrable Hamiltonian systems”, Discrete Contin. Dyn. Syst., 7:1 (2001), 61–84 | MR | Zbl
[44] G. Gallavotti, G. Gentile, V. Mastropietro, “Hamilton–Jacobi equation, heteroclinic chains and Arnol'd diffusion in three time scale systems”, Nonlinearity, 13:2 (2000), 323–340 | DOI | MR | Zbl
[45] V. Gelfreich, D. Turaev, “Unbounded energy growth in Hamiltonian systems with a slowly varying parameter”, Comm. Math. Phys., 283:3 (2008), 769–794 | DOI | MR | Zbl
[46] M. Gidea, C. Robinson, “Diffusion along transition chains of invariant tori and Aubry–Mather sets”, Ergodic Theory Dynam. Systems, 33:5 (2013), 1401–1449 | DOI | MR | Zbl
[47] C. Golé, Symplectic twist maps. Global variational techniques, Adv. Ser. Nonlinear Dynam., 18, World Scientific Publishing Co., Inc., River Edge, NJ, 2001, xviii+305 pp. | MR | Zbl
[48] M. Guardia, V. Kaloshin, J. Zhang, A second order expansion of the separatrix map for trigonometric perturbations of a priori unstable systems, 2015, 50 pp., arXiv: 1503.08301v2
[49] V. Kaloshin, M. Levi, “Geometry of Arnold diffusion”, SIAM Rev., 50:4 (2008), 702–720 | DOI | MR | Zbl
[50] V. Kaloshin, Ke Zhang, Dynamics of the dominant Hamiltonian, with applications to Arnold diffusion, 2014 (v2 – 2015), 84 pp., arXiv: 1410.1844
[51] V. Kaloshin, Jianlu Zhang, Ke Zhang, Normally hyperbolic invariant laminations and diffusive behaviour for the generalized Arnold example away from resonances, 2015, 85 pp., arXiv: 1511.04835
[52] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl
[53] M. Klein, A. Knauf, Classical planar scattering by Coulombic potentials, Lecture Notes in Phys. New Ser. Monogr., M13, Springer-Verlag, Berlin, 1992, v+142 pp. | DOI | Zbl
[54] O. Knill, “Topological entropy of standard type monotone twist maps”, Trans. Amer. Math. Soc., 348:8 (1996), 2999–3013 | DOI | MR | Zbl
[55] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl
[56] L. M. Lerman, “Complex dynamics and bifurcations in a Hamiltonian system having a transversal homoclinic orbit to a saddle focus”, Chaos, 1:2 (1991), 174–180 | DOI | MR | Zbl
[57] R. S. MacKay, J. D. Meiss, “Cantori for symplectic maps near the anti-integrable limit”, Nonlinearity, 5:1 (1992), 149–160 | DOI | MR | Zbl
[58] J. N. Mather, “Existence of quasi-periodic orbits for twist homeomorphisms of the annulus”, Topology, 21:4 (1982), 457–467 | DOI | MR | Zbl
[59] D. McDuff, D. Salamon, Introduction to symplectic topology, Oxford Math. Monogr., 2nd ed., The Clarendon Press, Oxford Univ. Press, New York, 1998, x+486 pp. | MR | Zbl
[60] Z. Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, The M.I.T. Press, Cambridge, MA–London, 1971, xv+282 pp. | MR | Zbl
[61] G. N. Piftankin, “Diffusion speed in the Mather problem”, Nonlinearity, 19:11 (2006), 2617–2644 | DOI | MR | Zbl
[62] G. N. Piftankin, D. V. Treschev, “Separatrix map in Hamiltonian systems”, Russian Math. Surveys, 62:2 (2007), 219–322 | DOI | DOI | MR | Zbl
[63] L. P. Shilnikov, “On a Poincaré–Birkhoff problem”, Math. USSR-Sb., 3:3 (1967), 353–371 | DOI | MR | Zbl
[64] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of qualitative theory in nonlinear dynamics. Part II, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 5, World Scientific Publishing Co., Inc., River Edge, NJ, 2001, xxiii+565 pp. | DOI | MR | Zbl
[65] S. Smale, “Diffeomorphisms with many periodic points”, Differential and combinatorial topology, A symposium in honor of M. Morse, Princeton Univ. Press, Princeton, N.J., 1965, 63–80 | MR | Zbl
[66] D. Treschev, “Multidimensional symplectic separatrix maps”, J. Nonlinear Sci., 12:1 (2002), 27–58 | DOI | MR | Zbl
[67] D. Treschev, “Trajectories in a neighbourhood of asymptotic surfaces of a priori unstable Hamiltonian systems”, Nonlinearity, 15:6 (2002), 2033–2052 | DOI | MR | Zbl
[68] D. Treschev, “Evolution of slow variables in a priori unstable Hamiltonian systems”, Nonlinearity, 17:5 (2004), 1803–1841 | DOI | MR | Zbl
[69] D. Treschev, “Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems”, Nonlinearity, 25:9 (2012), 2717–2757 | DOI | MR | Zbl
[70] D. Treschev, O. Zubelevich, Introduction to the perturbation theory of Hamiltonian systems, Springer Monogr. Math., Springer-Verlag, Berlin, 2010, x+211 pp. | DOI | MR | Zbl
[71] D. Turaev, “Hyperbolic sets near homoclinic loops to a saddle for systems with a first integral”, Regul. Chaotic Dyn., 19:6 (2014), 681–693 | DOI | MR | Zbl
[72] D. V. Turaev, L. P. Shilnikov, “On Hamiltonian systems with homoclinic saddle curves”, Soviet Math. Dokl., 39:1 (1989), 165–168 | MR | Zbl
[73] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno-vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR | Zbl
[74] A. P. Veselov, “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51 | DOI | MR | Zbl
[75] P. Walters, An introduction to ergodic theory, Grad. Texts in Math., 79, Springer-Verlag, New York–Berlin, 1982, ix+250 pp. | DOI | MR | Zbl