@article{RM_2015_70_5_a3,
author = {A. I. Bufetov},
title = {Action of the group of diffeomorphisms on determinantal measures},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {953--954},
year = {2015},
volume = {70},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_5_a3/}
}
A. I. Bufetov. Action of the group of diffeomorphisms on determinantal measures. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 5, pp. 953-954. http://geodesic.mathdoc.fr/item/RM_2015_70_5_a3/
[1] D. J. Daley, D. Vere-Jones, An introduction to the theory of point processes, v. I, Probab. Appl. (N. Y.), Elementary theory and methods, 2nd ed., Springer-Verlag, New York, 2003, xxii+469 pp. ; v. II, Probab. Appl. (N. Y.), General theory and structure, 2nd ed., Springer-Verlag, New York, 2008, xviii+573 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[2] O. Kallenberg, Probabilistic symmetries and invariance principles, Probab. Appl. (N. Y.), Springer, New York, 2005, xii+510 pp. | MR | Zbl
[3] O. Macchi, Adv. in Appl. Probab., 7 (1975), 83–122 | DOI | MR | Zbl
[4] G. Olshanski, Adv. Math., 226:3 (2011), 2305–2350 | DOI | MR | Zbl
[5] T. Shirai, Y. Takahashi, J. Funct. Anal., 205:2 (2003), 414–463 | DOI | MR | Zbl
[6] A. Soshnikov, Russian Math. Surveys, 55:5 (2000), 923–975 | DOI | DOI | MR | Zbl