Distribution of the zeros of Padé polynomials and analytic continuation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 5, pp. 901-951 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of analytic continuation of a multivalued analytic function with finitely many branch points on the Riemann sphere is discussed. The focus is on Padé approximants: classical (one-point) Padé approximants, multipoint Padé approximants, and Hermite–Padé approximants. The main result is a theorem on the distribution of zeros and the convergence of the Hermite–Padé approximants for a system $[1,f,f^2]$, where $f$ is a multivalued function in the so-called Laguerre class $\mathscr{L}$. Bibliography: 128 titles.
Keywords: analytic continuation, continued fractions, distribution of zeros, GRS-method, convergence in capacity.
Mots-clés : orthogonal polynomials, rational approximants, Padé polynomials, Hermite–Padé polynomials
@article{RM_2015_70_5_a2,
     author = {S. P. Suetin},
     title = {Distribution of the zeros of {Pad\'e} polynomials and analytic continuation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {901--951},
     year = {2015},
     volume = {70},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_5_a2/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Distribution of the zeros of Padé polynomials and analytic continuation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 901
EP  - 951
VL  - 70
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_5_a2/
LA  - en
ID  - RM_2015_70_5_a2
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Distribution of the zeros of Padé polynomials and analytic continuation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 901-951
%V 70
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2015_70_5_a2/
%G en
%F RM_2015_70_5_a2
S. P. Suetin. Distribution of the zeros of Padé polynomials and analytic continuation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 5, pp. 901-951. http://geodesic.mathdoc.fr/item/RM_2015_70_5_a2/

[1] N. I. Akhiezer, “Orthogonal polynomials on several intervals”, Soviet Math. Dokl., 1 (1960), 989–992 | MR | Zbl

[2] C. M. Andersen, J. F. Geer, “Power series expansions for the frequency and period of the limit cycle of the van der Pol equation”, SIAM J. Appl. Math., 42:3 (1982), 678–693 | DOI | MR | Zbl

[3] I. Andrianov, Ya. Avreitsevich, Metody asimptoticheskogo analiza i sinteza v nelineinoi dinamike i mekhanike deformiruemogo tverdogo tela, IKI, M.–Izhevsk, 2013, 276 pp. | MR | Zbl

[4] A. I. Aptekarev, “Sharp constants for rational approximations of analytic functions”, Sb. Math., 193:1 (2002), 1–72 | DOI | DOI | MR | Zbl

[5] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl

[6] A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131 | DOI | DOI | MR | Zbl

[7] A. I. Aptekarev, A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russian Math. Surveys, 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl

[8] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus $0$)”, Int. Math. Res. Pap. IMRP, 2008:4 (2008), rpm007, 128 pp. | DOI | MR | Zbl

[9] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl

[10] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials”, Sb. Math., 202:2 (2011), 155–206 | DOI | DOI | MR | Zbl

[11] A. I. Aptekarev, D. N. Tulyakov, “Geometry of Hermite–Padé approximants for system of functions $\{f,f^2\}$ with three branch points”, Preprinty IPM im. M. V. Keldysha, 2012, 077, 25 pp.

[12] A. I. Aptekarev, D. N. Tulyakov, “Abelev integral Nattolla na rimanovoi poverkhnosti kubicheskogo kornya mnogochlena 3-i stepeni”, Preprinty IPM im. M. V. Keldysha, 2014, 015, 25 pp.

[13] A. I. Aptekarev, W. Van Assche, M. L. Yattselev, Hermite–Padé approximants for a pair of Cauchy transforms with overlapping symmetric supports, 2015, 52 pp., arXiv: 1505.03993

[14] A. I. Aptekarev, M. L. Yattselev, Padé approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials, 2011 (v2 – 2012), 47 pp., arXiv: 1109.0332

[15] N. U. Arakelian, “On efficient analytic continuation of power series”, Math. USSR-Sb., 52:1 (1985), 21–39 | DOI | MR | Zbl

[16] S. S. Baghsorkhi, S. P. Suetin, Embedding AC power flow with voltage control in the complex plane: the case of analytic continuation via Padé approximants, 2015, 9 pp., arXiv: 1504.03249

[17] G. A. Baker, Jr., P. Graves-Morris, Padé approximants, Encyclopedia Math. Appl., 59, 2nd ed., Addison-Wesley Publishing Co., Reading, MA, 1996, xiv+746 pp. ; Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade, Mir, M., 1986, 502 pp. | DOI | MR | Zbl | MR | Zbl

[18] L. Bieberbach, Analytische Fortsetzung, Ergeb. Math. Grenzgeb. (N. F.), 3, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955, ii+168 pp. | MR | MR | Zbl | Zbl

[19] É. Borel, Leçons sur les fonctions de variables réelles et les développements en séries de polynômes, Gauthier-Villars, Paris, 1905, viii+158 pp. | Zbl

[20] V. I. Buslaev, “On the convergence of continued T-fractions”, Proc. Steklov Inst. Math., 235 (2001), 29–43 | MR | Zbl

[21] V. I. Buslaev, “Convergence of multipoint Padé approximants of piecewise analytic functions”, Sb. Math., 204:2 (2013), 190–222 | DOI | DOI | MR | Zbl

[22] V. I. Buslaev, “Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions”, Sb. Math., 206:2 (2015), 175–200 | DOI | DOI | MR | Zbl

[23] V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Method of interior variations and existence of $S$-compact sets”, Proc. Steklov Inst. Math., 279 (2012), 25–51 | DOI | MR | Zbl

[24] V. I. Buslaev, S. P. Suetin, “An extremal problem in potential theory”, Russian Math. Surveys, 69:5 (2014), 915–917 | DOI | DOI | Zbl

[25] V. I. Buslaev, S. P. Suetin, “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Sbornik statei, Tr. MIAN, 290, MAIK, M., 2015, 272–279

[26] P. L. Chebyshev, “O nepreryvnykh drobyakh”, Uchenye zap. Imp. akad. nauk, III (1855), 636–664; ПолноРμ собраниРμ сочинРμРЅРёРNo, С‚. II, Р�Р·Рґ-РІРѕ РђРќ РЎРЎРЎР , Рњ.–Р›., 1948, 103–126 ; P. Tchébycheff, “Sur les fractions continues”, J. Math. Pures Appl. (2), 3 (1858), 289–323 | MR | Zbl

[27] D. V. Chudnovsky, G. V. Chudnovsky, “Padé approximations to solutions of linear differential equations and applications to Diophantine analysis”, Number theory (New York, 1982), Lecture Notes in Math., 1052, Springer, Berlin, 1984, 85–167 | DOI | MR | Zbl

[28] D. V. Chudnovsky, G. V. Chudnovsky, “The Wronskian formalism for linear differential equations and Padé approximations”, Adv. in Math., 53:1 (1984), 28–54 | DOI | MR

[29] G. V. Chudnovsky, “Padé approximations to the generalized hypergeometric functions. I”, J. Math. Pures Appl. (9), 58:4 (1979), 445–476 | MR | Zbl

[30] G. V. Chudnovsky, “Padé approximation and the Riemann monodromy problem”, Bifurcation phenomena in mathematical physics and related topics (Cargèse, 1979), NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., 54, Reidel, Dordrecht–Boston, MA, 1980, 449–510 | MR | Zbl

[31] M. B. Dadfar, J. Geer, C. M. Andersen, “Perturbation analysis of the limit cycle of the free van der Pol equation”, SIAM J. Appl. Math., 44:5 (1984), 881–895 | DOI | MR | Zbl

[32] A. Deaño, D. Huybrechs, A. B. J. Kuijlaars, “Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature”, J. Approx. Theory, 162:12 (2010), 2202–2224 | DOI | MR | Zbl

[33] S. Delvaux, A. López, G. López Lagomasino, “A family of Nikishin systems with periodic recurrence coefficients”, Sb. Math., 204:1 (2013), 43–74 | DOI | DOI | MR | Zbl

[34] V. Druskin, S. Güttel, L. Knizhnerman, “Near-optimal perfectly matched layers for indefinite Helmholtz problems”, SIAM Rev., 2016 (to appear); 2014 (v1 – 2013), 27 pp. ; 2015, arXiv: http://eprints.ma.man.ac.uk/22291507.06265

[35] S. Dumas, Sur le développement des fonctions elliptiques en fractions continues, Thèse, Zürich, 1908, 59 pp. | Zbl

[36] U. Fidalgo Prieto, G. López Lagomasino, “Nikishin systems are perfect”, Constr. Approx., 34:3 (2011), 297–356 | DOI | MR | Zbl

[37] G. Filipuk, W. Van Assche, Lun Zhang, “Ladder operators and differential equations for multiple orthogonal polynomials”, J. Phys. A, 46:20 (2013), 205204, 24 pp. | DOI | MR | Zbl

[38] M. Froissart, “Approximation de Padé: application à la physique des particules élémentaires”, Recherche Cooperative sur Programme No 25, v. 9, eds. J. Carmona, M. Froissart, D. W. Robinson, D. Ruelle, Centre National de la Recherche Scientifique (CNRS), Strasbourg, 1969, 1–13

[39] A. A. Gonchar, “5.6. Rational approximation of analytic functions”, J. Soviet Math., 26:5 (1984), 2218–2220 | DOI | MR

[40] A. A. Gonchar, “Rational approximation of analytic functions”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S44–S57 | DOI | DOI | MR | Zbl

[41] A. A. Gonchar, E. A. Rakhmanov, “On the convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl

[42] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl

[43] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl

[44] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl

[45] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl

[46] S. O. Gorchinskii, D. V. Osipov, “Mnogomernyi simvol Kontu-Karrera: lokalnaya teoriya”, Matem. sb., 206:9 (2015), 21–98 | DOI

[47] S. Gorchinskiy, A. Ovchinnikov, “Isomonodromic differential equations and differential categories”, J. Math. Pures Appl. (9), 102:1 (2014), 48–78 | DOI | MR | Zbl

[48] G. H. Halphen, Traité des fonctions elliptiques et de leurs applications. I, Gauthier-Villars, Paris, 1886, viii+492 pp. | Zbl

[49] M. Huttner, “Constructible sets of linear differential equations and effective rational approximations of polylogarithmic functions”, Israel J. Math., 153 (2006), 1–43 | DOI | MR | Zbl

[50] N. R. Ikonomov, R. K. Kovacheva, S. P. Suetin, Some numerical results on the behavior of zeros of the Hermite–Padé polynomials, 2015, 95 pp., arXiv: 1501.07090

[51] N. R. Ikonomov, R. K. Kovacheva, S. P. Suetin, On the limit zero distribution of type I Hermite–Padé polynomials, 2015, 67 pp., arXiv: 1506.08031

[52] W. B. Jones, W. J. Thron, Continued fractions. Analytic theory and applications, Encyclopedia Math. Appl., 11, Addison-Wesley Publishing Co., Reading, MA, 1980, xxix+428 pp. | MR | MR | Zbl

[53] E. A. Karabut, A. A. Kuzhuget, “Conformal mapping, Padé approximants, and an example of flow with a significant deformation of the free boundary”, European J. Appl. Math., 25:6 (2014), 729–747 | DOI | MR | Zbl

[54] A. Khovanskii, Topological Galois theory. Solvability and unsolvability of equations in finite terms, Appendices C and D by Khovanskii and Yu. Burda, Springer Monogr. Math., Springer, Heidelberg, 2014, xviii+307 pp. | DOI | MR | Zbl

[55] E. R. Kolchin, “Rational approximation to solutions of algebraic differential equations”, Proc. Amer. Math. Soc., 10:2 (1959), 238–244 | DOI | MR | Zbl

[56] A. V. Komlov, S. P. Suetin, “An asymptotic formula for a two-point analogue of Jacobi polynomials”, Russian Math. Surveys, 68:4 (2013), 779–781 | DOI | DOI | MR | Zbl

[57] A. V. Komlov, S. P. Suetin, “Strong asymptotics of two-point Padé approximants for power-like multivalued functions”, Dokl. Math., 89:2 (2014), 165–168 | DOI | DOI | MR | Zbl

[58] A. V. Komlov, S. P. Suetin, “An asymptotic formula for polynomials orthonormal with respect to a varying weight. II”, Sb. Math., 205:9 (2014), 1334–1356 | DOI | DOI | MR | Zbl

[59] R. K. Kovacheva, S. P. Suetin, “Distribution of zeros of the Hermite–Padé polynomials for a system of three functions, and the Nuttall condenser”, Proc. Steklov Inst. Math., 284 (2014), 168–191 | DOI | DOI | Zbl

[60] A. B. J. Kuijlaars, G. L. F. Silva, “$S$-curves in polynomial external fields”, J. Approx. Theory, 191 (2015), 1–37 | DOI | MR | Zbl

[61] G. V. Kuz'mina, “Moduli of families of curves and quadratic differentials”, Proc. Steklov Inst. Math., 139 (1982), 1–231 | MR | Zbl

[62] E. N. Laguerre, “Sur la réduction en fractions continues d'une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels”, J. Math. Pures Appl. (4), 1 (1885), 135–165 ; ØE uvres, v. II, Géométrie, Gauthier-Villars, Paris, 1905, 438–448 | Zbl | MR | Zbl

[63] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | MR | Zbl | Zbl

[64] A. Lasjaunias, “A survey of Diophantine approximation in fields of power series”, Monatsh. Math., 130:3 (2000), 211–229 | DOI | MR | Zbl

[65] G. López Lagomasino, S. Medina Peralta, U. Fidalgo Prieto, “Hermite–Padé approximation for certain systems of meromorphic functions”, Sb. Math., 206:2 (2015), 225–241 | DOI | DOI | MR | Zbl

[66] D. S. Lubinsky, A. Sidi, H. Stahl, “Asymptotic zero distribution of biorthogonal polynomials”, J. Approx. Theory, 190 (2015), 26–49 | DOI | MR | Zbl

[67] A. P. Magnus, J. Nuttall, On the constructive rational approximation of certain entire functions, Draft of preliminary report, not in form intended for publication, 1988, 33 pp. http://publish.uwo.ca/~jnuttall/cafe.pdf

[68] K. Mahler, “Perfect systems”, Compositio Math., 19 (1968), 95–166 | MR | Zbl

[69] A. I. Markushevich, Theory of functions of a complex variable, v. II, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965, xii+333 pp. | MR | MR | Zbl | Zbl

[70] A. Martínez-Finkelshtein, E. A. Rakhmanov, “On asymptotic behavior of Heine–Stieltjes and Van Vleck polynomials”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 209–232 | DOI | MR | Zbl

[71] A. Martínez-Finkelshtein, E. A. Rakhmanov, “Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials”, Comm. Math. Phys., 302:1 (2011), 53–111 | DOI | MR | Zbl

[72] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium measure and the $S$-property of a stationary compact set”, Russian Math. Surveys, 66:1 (2011), 176–178 | DOI | DOI | MR | Zbl

[73] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium energy and the $S$-property of stationary compact sets”, Sb. Math., 202:12 (2011), 1831–1852 | DOI | DOI | MR | Zbl

[74] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall's work 25 years later”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 165–193 | DOI | MR | Zbl

[75] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “A differential equation for Hermite–Padé polynomials”, Russian Math. Surveys, 68:1 (2013), 183–185 | DOI | DOI | MR | Zbl

[76] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Asymptotics of type I Hermite–Padé polynomials for semiclassical functions”, Contemp. Math. (to appear)

[77] J. J. Morales-Ruiz, “Picard–Vessiot theory and integrability”, J. Geom. Phys., 87 (2015), 314–343 | DOI | MR | Zbl

[78] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl

[79] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | MR | MR | Zbl | Zbl

[80] J. Nuttall, “Sets of minimum capacity, Padé approximants and the bubble problem”, Bifurcation phenomena in mathematical physics and related topics, NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., 54, eds. C. Bardos, D. Bessis, D. Reidel Publishing Co., Dordrecht–Boston, MA, 1980, 185–201 | MR | Zbl

[81] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[82] J. Nuttall, “Asymptotics of generalized Jacobi polynomials”, Constr. Approx., 2:1 (1986), 59–77 | DOI | MR | Zbl

[83] Ch. F. Osgood, “Effective bounds on the ‘Diophantine approximation’ of algebraic functions over fields of arbitrary characteristic and applications to differential equations”, Nederl. Akad. Wetensch. Proc. Ser. A, 78, = Indag. Math., 37 (1975), 105–119 | DOI | MR | Zbl

[84] Ch. F. Osgood, “The approximation of solutions to linear homogeneous differential equations by rational functions”, Monatsh. Math., 90:2 (1980), 143–151 | DOI | MR | Zbl

[85] Ch. F. Osgood, “Sometimes effective Thue–Siegel–Roth–Schmidt–Nevanlinna bounds, or better”, J. Number Theory, 21:3 (1985), 347–389 | DOI | MR | Zbl

[86] Ch. F. Osgood, “The Diophantine approximation of general solutions of algebraic differential equations”, Complex Variables Theory Appl., 43:3-4 (2001), 381–390 | DOI | MR | Zbl

[87] Ch. F. Osgood, “Nevanlinna theory, Diophantine approximation, and numerical analysis”, J. Fourier Anal. Appl., 7:3 (2001), 309–317 | DOI | MR | Zbl

[88] E. A. Perevoznikova, E. A. Rakhmanov, Variatsiya ravnovesnoi energii i $S$-svoistvo kompaktov minimalnoi emkosti, Preprint, M., 1994

[89] O. Perron, Die Lehre von den Kettenbrüchen, v. II, Analytisch-funktionentheoretische Kettenbrüche, 3. verbesserte und erweiterte Aufl., B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957, vi+316 pp. | MR | Zbl

[90] E. A. Rakhmanov, “The asymptotics of Hermite–Padé polynomials for two Markov-type functions”, Sb. Math., 202:1 (2011), 127–134 | DOI | DOI | MR | Zbl

[91] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl

[92] E. A. Rakhmanov, “Gonchar–Stahl's $\rho^2$-theorem and associated directions in the theory of rational approximation of analytic functions”, Matem. sb. (to appear); 2015, 30 pp., arXiv: 1503.06620

[93] E. A. Rakhmanov, S. P. Suetin, “Asymptotic behaviour of the Hermite–Padé polynomials of the 1st kind for a pair of functions forming a Nikishin system”, Russian Math. Surveys, 67:5 (2012), 954–956 | DOI | DOI | MR | Zbl

[94] E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite–Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390 | DOI | DOI | MR | Zbl

[95] A. K. Ramazanov, “Formulas for rational interpolation and remainders”, Math. Notes, 96:5 (2014), 767–776 | DOI | DOI | MR | Zbl

[96] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Appendix B by Th. Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl

[97] W. M. Schmidt, “Rational approximation to solutions of linear differential equations with algebraic coefficients”, Proc. Amer. Math. Soc., 53:2 (1975), 285–289 | DOI | MR | Zbl

[98] W. M. Schmidt, “On Osgood's effective Thue theorem for algebraic functions”, Comm. Pure Appl. Math., 29:6 (1976), 759–773 | DOI | MR | Zbl

[99] W. M. Schmidt, “On continued fractions and Diophantine approximation in power series fields”, Acta Arith., 95:2 (2000), 139–166 | MR | Zbl

[100] W. Y. Sit, “The Ritt–Kolchin theory for differential polynomials”, Differential algebra and related topics (Newark, NJ, 2000), World Sci. Publ., River Edge, NJ, 2002, 1–70 | DOI | MR | Zbl

[101] V. N. Sorokin, “Hermite–Padé approximations of sequential powers of a logarithm and their arithmetic applications”, Soviet Math. (Iz. VUZ), 35:11 (1991), 67–74 | MR | Zbl

[102] V. N. Sorokin, “Hermite–Padé approximants of polylogarithms”, Russian Math. (Iz. VUZ), 38:5 (1994), 47–57 | MR | Zbl

[103] V. N. Sorokin, “Hermite–Padé approximations for Nikishin systems and the irrationality of $\zeta(3)$”, Russian Math. Surveys, 49:2 (1994), 176–177 | DOI | MR | Zbl

[104] V. N. Sorokin, “On linear independence of values of generalized polylogarithms”, Sb. Math., 192:8 (2001), 1225–1239 | DOI | DOI | MR | Zbl

[105] V. N. Sorokin, “Cyclic graphs and Apéry's theorem”, Russian Math. Surveys, 57:3 (2002), 535–571 | DOI | DOI | MR | Zbl

[106] G. Springer, Introduction to Riemann surfaces, Addison-Wesley Publishing Company, Inc., Reading, MA, 1957, viii+307 pp. | MR | MR | Zbl | Zbl

[107] H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4 (1985), 311–324 | DOI | MR | Zbl

[108] H. Stahl, “Extremal domains associated with an analytic function. II”, Complex Variables Theory Appl., 4 (1985), 325–338 | DOI | MR | Zbl

[109] H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4 (1985), 339–354 | DOI | MR | Zbl

[110] H. Stahl, “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2 (1986), 225–240 | DOI | MR | Zbl

[111] H. Stahl, “Orthogonal polynomials with complex valued weight function. II”, Constr. approx., 2 (1986), 241–251 | DOI | MR | Zbl

[112] H. Stahl, “Asymptotics of Hermite–Padé polynomials and related convergence results – a summary of results”, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 23–53 | MR | Zbl

[113] H. Stahl, “Conjectures around the Baker–Gammel–Wills conjecture”, Constr. Approx., 13:2 (1997), 287–292 | MR | Zbl

[114] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl

[115] S. P. Suetin, “Asymptotics of the denominators of the diagonal Padé approximations of orthogonal expansions”, Dokl. Math., 56:2 (1997), 774–776 | MR | Zbl

[116] S. P. Suetin, “Uniform convergence of Padé diagonal approximants for hyperelliptic functions”, Sb. Math., 191:9 (2000), 1339–1373 | DOI | DOI | MR | Zbl

[117] S. P. Suetin, “Convergence of Chebyshev continued fractions for elliptic functions”, Sb. Math., 194:12 (2003), 1807–1835 | DOI | DOI | MR | Zbl

[118] S. P. Suetin, “Numerical analysis of some characteristics of the limit cycle of the free van der Pol equation”, Proc. Steklov Inst. Math., 278, suppl. 1 (2012), S1–S54 | DOI | DOI | Zbl

[119] S. Suetin, On the distribution of zeros of the Hermite–Padé polynomials for three algebraic functions $1$, $f$, $f^2$ and the global topology of the Stokes lines for some differential equations of the third order, 2013, 59 pp., arXiv: 1312.7105

[120] G. Szegö, Orthogonal polynomials, 23, rev. ed., Amer. Math. Soc. Colloq. Publ., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl

[121] W. Van Assche, “Padé and Hermite–Padé approximation and orthogonality”, Surv. Approx. Theory, 2 (2006), 61–91 | MR | Zbl

[122] W. Van Assche, “Nearest neighbor recurrence relations for multiple orthogonal polynomials”, J. Approx. Theory, 163:10 (2011), 1427–1448 | DOI | MR | Zbl

[123] E. B. van Vleck, “Selected topics in the theory of divergent series and of continued fractions” (Boston colloquium, Sept. 2–5, 1903), Amer. Math. Soc. Coll. Publ., 1, Macmillan, New York, 1905, 75–187 | Zbl

[124] R. S. Varga, Functional analysis and approximation theory in numerical analysis, CBMS-NSF Regional Conf. Ser. Appl. Math., 3, SIAM, Philadelphia, PA, 1971, v+76 pp. | MR | MR | Zbl | Zbl

[125] P. Vojta, “Diophantine approximation and Nevanlinna theory”, Arithmetic geometry, Lecture Notes in Math., 2009, Springer, Berlin, 2011, 111–224 | DOI | MR | Zbl

[126] P. Vojta, “Multiplier ideal sheaves, Nevanlinna theory, and Diophantine approximation”, Number theory, analysis and geometry, Springer, New York, 2012, 647–658 | DOI | MR | Zbl

[127] J. T.-Y. Wang, “An effective Schmidt's subspace theorem over function fields”, Math. Z., 246:4 (2004), 811–844 | DOI | MR | Zbl

[128] È. I. Zverovich, “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces”, Russian Math. Surveys, 26:1 (1971), 117–192 | DOI | MR | Zbl