Mots-clés : plane partitions
@article{RM_2015_70_5_a0,
author = {N. M. Bogolyubov and K. L. Malyshev},
title = {Integrable models and combinatorics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {789--856},
year = {2015},
volume = {70},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_5_a0/}
}
N. M. Bogolyubov; K. L. Malyshev. Integrable models and combinatorics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 5, pp. 789-856. http://geodesic.mathdoc.fr/item/RM_2015_70_5_a0/
[1] L. A. Takhtadzhyan, L. D. Faddeev, “The quantum method of the inverse problem and the Heisenberg $XYZ$ model”, Russian Math. Surveys, 34:5 (1979), 11–68 | DOI | MR
[2] L. D. Faddeev, “Quantum completely integrable models in field theory”, Sov. Sci. Rev. C: Math. Phys., 1 (1980), 107–160 ; 40 years in mathematical physics, World Sci. Ser. 20th Century Math., 2, World Sci. Publ., River Edge, NJ, 1995, 187–235 | Zbl | DOI | MR | Zbl
[3] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Quantum inverse problem method. I”, Theoret. and Math. Phys., 40:2 (1979), 688–706 | DOI | MR
[4] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Integrable quantum field theories (Tvärminne, 1981), Lecture Notes in Phys., 151, Springer, Berlin–New York, 1982, 61–119 | DOI | MR | Zbl
[5] P. P. Kulish, F. A. Smirnov, “Anisotropic Heisenberg ferromagnet with a ground state of the domain wall type”, J. Phys. C, 18:5 (1985), 1037–1048 | DOI
[6] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Symétries quantiques (Les Houches, 1995), North Holland, Amsterdam, 1998, 149–219 | MR | Zbl
[7] L. D. Faddeev, “The new life of complete integrability”, Phys. Usp., 56:5 (2013), 465–472 | DOI | DOI
[8] H. Bethe, “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette”, Z. Phys., 71:3-4 (1931), 205–226 | DOI | Zbl
[9] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1:1 (1990), 193–225 | MR | Zbl
[10] N. Yu. Reshetikhin, “Quasitriangular Hopf algebras and invariants of links”, Leningrad Math. J., 1:2 (1990), 491–513 | MR | Zbl
[11] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz”, Comm. Math. Phys., 177:2 (1996), 381–398 | DOI | MR | Zbl
[12] L. D. Faddeev, A. Yu. Volkov, “Discrete evolution for the zero modes of the quantum Liouville model”, J. Phys. A, 41:19 (2008), 194008, 12 pp. | DOI | MR | Zbl
[13] A. Bytsko, J. Teschner, “The integrable structure of nonrational conformal field theory”, Adv. Theor. Math. Phys., 17:4 (2013), 701–740 | DOI | MR | Zbl
[14] N. A. Nekrasov, S. L. Shatashvili, “Supersymmetric vacua and Bethe ansatz”, Nuclear Phys. B Proc. Suppl., 192/193 (2009), 91–112 | DOI | MR
[15] N. Nekrasov, S. Shatashvili, “Quantum integrability and supersymmetric vacua”, Prog. Theor. Phys. Suppl., 177 (2009), 105–119 | DOI | Zbl
[16] A. Yu. Volkov, L. D. Faddeev, “Yang-baxterization of the quantum dilogarithm”, J. Math. Sci. (N. Y.), 88:2 (1998), 202–207 | DOI | MR | Zbl
[17] V. Tarasov, A. Varchenko, “Combinatorial formulae for nested Bethe vectors”, SIGMA, 9 (2013), 048, 28 pp. | DOI | MR | Zbl
[18] S. È. Derkachev, V. P. Spiridonov, “Yang–Baxter equation, parameter permutations, and the elliptic beta integral”, Russian Math. Surveys, 68:6 (2013), 1027–1072 | DOI | DOI | MR | Zbl
[19] R. P. Stanley, Enumerative combinatorics, v. 1, Cambridge Stud. Adv. Math., 49, Cambridge Univ. Press, Cambridge, 1997, xi+325 pp. ; v. 2, Cambridge Stud. Adv. Math., 62, Cambridge Univ. Press, Cambridge, 1999, xii+581 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[20] G. E. Andrews, The theory of partitions, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1998, xvi+255 pp. | MR | Zbl
[21] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982, xii+486 pp. | MR | MR | Zbl
[22] E. H. Lieb, F. Y. Wu, “Two dimensional ferroelectric models”, Phase transitions and critical phenomena, v. 1, Academic Press, London, 1972, 331–490
[23] M. Gaudin, La fonction d'onde de Bethe, Collect. Commissariat Energ. Atom. Ser. Sci., Masson, Paris, 1983, xvi+331 pp. | MR | MR | Zbl
[24] V. E. Korepin, “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl
[25] A. G. Izergin, “Partition function of a six-vertex model in a finite volume”, Soviet Phys. Dokl., 32:11 (1987), 878–879 | MR | Zbl
[26] V. Korepin, P. Zinn-Justin, “Thermodynamic limit of the six-vertex model with domain wall boundary conditions”, J. Phys. A, 33:40 (2000), 7053–7066 | DOI | MR | Zbl
[27] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A, 35:27 (2002), 5525–5541 | DOI | MR | Zbl
[28] G. Kuperberg, “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996:3 (1996), 139–150 | DOI | MR | Zbl
[29] W. H. Mills, D. P. Robbins, H. Rumsey, Jr., “Alternating sign matrices and descending plane partitions”, J. Combin. Theory Ser. A, 34:3 (1983), 340–359 | DOI | MR | Zbl
[30] D. M. Bressoud, Proofs and confirmations. The story of the alternating sign matrix conjecture, MAA Spectrum, Math. Assoc. America, Washington, DC; Cambridge Univ. Press, Cambridge, 1999, xvi+274 pp. | DOI | MR | Zbl
[31] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, “Alternating-sign matrices and domino tilings. I”, J. Algebraic Combin., 1:2 (1992), 111–132 | DOI | MR | Zbl
[32] F. Colomo, A. G. Pronko, “Square ice, alternating sign matrices, and classical orthogonal polynomials”, J. Stat. Mech. Theory Exp., 2005, no. 1, P01005, 33 pp. (electronic) | DOI | MR | Zbl
[33] D. Betea, M. Wheeler, P. Zinn-Justin, “Refined Cauchy/Littlewood identities and six-vertex model partition functions. II. Proofs and new conjectures”, J. Algebraic Combin., 42:2 (2015), 555–603 ; (2014), 34 pp., arXiv: 1405.7035 | DOI | MR | Zbl
[34] P. Zinn-Justin, Six-vertex, loop and tiling models: integrability and combinatorics, 2009, 77 pp., arXiv: 0901.0665
[35] N. M. Bogoliubov, “Four-vertex model and random tilings”, Theoret. and Math. Phys., 155:1 (2008), 523–535 | DOI | DOI | MR | Zbl
[36] D. Allison, N. Reshetikhin, “Numerical study of the 6-vertex model with domain wall boundary conditions”, Ann. Inst. Fourier (Grenoble), 55:6 (2005), 1847–1869 | DOI | MR | Zbl
[37] F. Colomo, V. Noferini, A. G. Pronko, “Algebraic arctic curves in the domain-wall six-vertex model”, J. Phys. A, 44:19 (2011), 195201, 13 pp. | DOI | MR | Zbl
[38] F. Colomo, A. G. Pronko, P. Zinn-Justin, “The arctic curve of the domain-wall six-vertex model in its antiferroelectric regime”, J. Stat. Mech. Theory Exp., 2010, no. 3, L03002, 11 pp. | MR
[39] A. M. Vershik, S. V. Kerov, “Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux”, Soviet Math. Dokl., 18 (1977), 527–531 | MR | Zbl
[40] A. M. Vershik, “Statistical mechanics of combinatorial partitions, and their limit shapes”, Funct. Anal. Appl., 30:2 (1996), 90–105 | DOI | DOI | MR | Zbl
[41] A. Okounkov, “Infinite wedge and random partitions”, Selecta Math. (N. S.), 7:1 (2001), 57–81 | DOI | MR | Zbl
[42] A. Okounkov, N. Reshetikhin, “Random skew plane partitions and the Pearcey process”, Comm. Math. Phys., 269:3 (2007), 571–609 | DOI | MR | Zbl
[43] P. A. MacMahon, Combinatory analysis, v. 1, 2, Cambridge Univ. Press, Cambridge, 1915, 1916, xx+300 pp., xix+340 pp. | MR | Zbl
[44] M. E. Fisher, “Walks, walls, wetting, and melting”, J. Statist. Phys., 34:5-6 (1984), 667–729 | DOI | MR | Zbl
[45] S. Redner, A guide to first-passage processes, Cambridge Univ. Press, Cambridge, 2001, x+312 pp. | DOI | MR | Zbl
[46] P. J. Forrester, “Exact solution of the lock step model of vicious walkers”, J. Phys. A, 23:7 (1990), 1259–1273 | DOI | MR | Zbl
[47] T. Nagao, P. J. Forrester, “Vicious random walkers and a discretization of Gaussian random matrix ensembles”, Nuclear Phys. B, 620:3 (2002), 551–565 | DOI | MR | Zbl
[48] A. J. Guttmann, A. L. Owczarek, X. G. Viennot, “Vicious walkers and Young tableaux. I. Without walls”, J. Phys. A, 31:40 (1998), 8123–8135 | DOI | MR | Zbl
[49] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. II. With a wall”, J. Phys. A, 33:48 (2000), 8835–8866 | DOI | MR | Zbl
[50] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers, and Young tableaux. III. Between two walls”, J. Statist. Phys., 110:3-6 (2003), 1069–1086 | DOI | MR | Zbl
[51] A. Borodin, G. Olshanski, “Infinite-dimensional diffusions as limits of random walks on partitions”, Probab. Theory Related Fields, 144:1-2 (2009), 281–318 | DOI | MR | Zbl
[52] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monogr., 2nd ed., Oxford Univ. Press, New York, 1995, x+475 pp. ; I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984, 224 pp. | MR | Zbl | MR | Zbl
[53] R. Rajesh, D. Dhar, “An exactly solvable anisotropic directed percolation model in three dimensions”, Phys. Rev. Lett., 81:8 (1998), 1646–1649 | DOI
[54] A. Okounkov, N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. Amer. Math. Soc., 16:3 (2003), 581–603 (electronic) | DOI | MR | Zbl
[55] P. L. Ferrari, H. Spohn, “Step fluctuations for a faceted crystal”, J. Statist. Phys., 113:1-2 (2003), 1–46 | DOI | MR | Zbl
[56] T. Nakatsu, K. Takasaki, “Melting crystal, quantum torus and Toda hierarchy”, Comm. Math. Phys., 285:2 (2009), 445–468 | DOI | MR | Zbl
[57] A. Okounkov, N. Reshetikhin, C. Vafa, “Quantum Calabi–Yau and classical crystals”, The unity of mathematics, In honor of the ninetieth birthday of I. M. Gelfand, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 597–618 | DOI | MR | Zbl
[58] N. M. Bogoliubov, “$XX0$ Heisenberg chain and random walks”, J. Math. Sci. (N. Y.), 138:3 (2006), 5636–5643 | DOI | MR | Zbl
[59] N. M. Bogoliubov, “Integrable models for the vicious and friendly walkers”, J. Math. Sci. (N. Y.), 143:1 (2007), 2729–2737 | DOI | MR | Zbl
[60] N. M. Bogoliubov, C. Malyshev, “Correlation functions of the XX Heisenberg magnet and random walks of vicious walkers”, Theoret. and Math. Phys., 159:2 (2009), 563–574 | DOI | DOI | MR | Zbl
[61] N. V. Tsilevich, “Quantum inverse scattering method for the $q$-boson model and symmetric functions”, Funct. Anal. Appl., 40:3 (2006), 207–217 | DOI | DOI | MR | Zbl
[62] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A, 38:43 (2005), 9415–9430 | DOI | MR | Zbl
[63] N. M. Bogolyubov, “Enumeration of plane partitions and the algebraic Bethe anzatz”, Theoret. and Math. Phys., 150:2 (2007), 165–174 | DOI | DOI | MR | Zbl
[64] W. Heisenberg, “Zur Theorie des Ferromagnetismus”, Z. Phys., 49:9-10 (1928), 619–636 | DOI | Zbl
[65] C. N. Yang, C. P. Yang, “One-dimensional chain of anisotropic spin–spin interactions. I. Proof of Bethe's hypothesis for ground state in a finite system”, Phys. Rev., 150:1 (1966), 321–327 | DOI
[66] C. N. Yang, C. P. Yang, “One-dimensional chain of anisotropic spin–spin interactions. II. Properties of the ground-state energy per lattice site for an infinite system”, Phys. Rev., 150:1 (1966), 327–339 | DOI
[67] C. N. Yang, C. P. Yang, “One-dimensional chain of anisotropic spin–spin interactions. III. Applications”, Phys. Rev., 151:1 (1966), 258–264 | DOI
[68] A. V. Razumov, Yu. G. Stroganov, “Spin chains and combinatorics”, J. Phys. A, 34:14 (2001), 3185–3190 | DOI | MR | Zbl
[69] P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, New York Univ., Courant Inst. Math. Sci., New York, NY; Amer. Math. Soc., Providence, RI, 1999, viii+273 pp. | MR | Zbl
[70] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992, 240 pp. | MR | Zbl
[71] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1993, xx+555 pp. | DOI | MR | Zbl
[72] A. G. Izergin, V. E. Korepin, “Correlation functions for the Heisenberg $XXZ$-antiferromagnet”, Comm. Math. Phys., 99:2 (1985), 271–302 | DOI | MR | Zbl
[73] F. H. L. Eßler, H. Frahm, A. G. Izergin, V. E. Korepin, “Determinant representation for correlation functions of spin-1/2 XXX and XXZ Heisenberg magnets”, Comm. Math. Phys., 174:1 (1995), 191–214 | DOI | MR | Zbl
[74] N. Kitanine, J. M. Maillet, V. Terras, “Form factors of the XXZ Heisenberg spin-$\frac12$ finite chain”, Nuclear Phys. B, 554:3 (1999), 647–678 | DOI | MR | Zbl
[75] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain at the free fermion point from their multiple integral representations”, Nuclear Phys. B, 642:3 (2002), 433–455 | DOI | MR | Zbl
[76] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Large distance asymptotic behaviour of the emptiness formation probability of the $XXZ$ spin-$\frac12$ Heisenberg chain”, J. Phys. A, 35:49 (2002), L753–L758 | DOI | MR | Zbl
[77] N. A. Slavnov, “The algebraic Bethe ansatz and quantum integrable systems”, Russian Math. Surveys, 62:4 (2007), 727–766 | DOI | DOI | MR | Zbl
[78] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Spin–spin correlation functions of the $XXZ$-$\frac12$ Heisenberg chain in a magnetic field”, Nuclear Phys. B, 641:3 (2002), 487–518 | DOI | MR | Zbl
[79] L. Carlitz, “Some determinants of $q$-binomial coefficients”, J. Reine Angew. Math., 1967:226 (1967), 216–220 | DOI | MR | Zbl
[80] N. M. Bogoliubov, C. Malyshev, “Correlation functions of XX0 Heisenberg chain, $q$-binomial determinants, and random walks”, Nuclear Phys. B, 879 (2014), 268–291 | DOI | MR | Zbl
[81] P. J. Forrester, S. O. Warnaar, “The importance of the Selberg integral”, Bull. Amer. Math. Soc. (N. S.), 45:4 (2008), 489–534 | DOI | MR | Zbl
[82] P. J. Forrester, Log-gases and random matrices, London Math. Soc. Monogr. Ser., 34, Princeton Univ. Press, Princeton, NJ, 2010, xiv+791 pp. | MR | Zbl
[83] F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti, “Correlators in the Heisenberg $XXO$ chain as Fredholm determinants”, Phys. Lett. A, 169:4 (1992), 243–247 | DOI | MR
[84] F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti, “Temperature correlation functions in the XX0 Heisenberg chain. I”, TMF, 94:1 (1993), 19–51 | MR
[85] F. Colomo, A. G. Izergin, V. Tognetti, “Correlation functions in the XXO Heisenberg chain and their relations with spectral shapes”, J. Phys. A, 30:2 (1997), 361–370 | DOI | MR | Zbl
[86] B.-Q. Jin, V. E. Korepin, “Quantum spin chain, Toeplitz determinants and the Fisher–Hartwig conjecture”, J. Statist. Phys., 116:1-4 (2004), 79–95 | DOI | MR | Zbl
[87] D. J. Gross, E. Witten, “Possible third-order phase transition in the large-$N$ lattice gauge theory”, Phys. Rev. D, 21:2 (1980), 446–453 | DOI
[88] D. Pérez-García, M. Tierz, “Mapping between the Heisenberg XX spin chain and low-energy QCD”, Phys. Rev. X, 4:2 (2014), 021050, 12 pp. | DOI
[89] P. J. Forrester, S. N. Majumdar, G. Schehr, “Non-intersecting Brownian walkers and Yang–Mills theory on the sphere”, Nuclear Phys. B, 844:3 (2011), 500–526 | DOI | MR | Zbl
[90] F. Colomo, A. G. Pronko, “Third-order phase transition in random tilings”, Phys. Rev. E, 88 (2013), 042125, 11 pp. | DOI
[91] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 1, 2, 3, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, 1953, 1955, xxvi+302 pp., xvii+396 pp., xvii+292 pp. | MR | MR | MR | MR | Zbl | Zbl
[92] W. Li, H. Park, M. Widom, “Finite-size scaling amplitudes in a random tiling model”, J. Phys. A, 23:11 (1990), L573–L580 | DOI | MR
[93] W. Li, H. Park, “Logarithmic singularity in the surface free energy near commensurate-incommensurate transitions”, J. Phys. A, 24:1 (1991), 257–264 | DOI
[94] W. Fulton, Young tableaux. With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997, x+260 pp. | MR | Zbl
[95] J. Harnad, E. Lee, Symmetric polynomials, generalized Jacobi–Trudi identities and $\tau$-functions, CRM-3326, 2013, 33 (v5 – 2013) pp., arXiv: 1304.0020
[96] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959, x+374 pp., ix+276 pp. | MR | MR | Zbl | Zbl
[97] N. M. Bogoliubov, C. Malyshev, “The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers”, St. Petersburg Math. J., 22:3 (2011), 359–377 | DOI | MR | Zbl
[98] N. M. Bogoliubov, C. L. Malyshev, “Ising limit of a Heisenberg XXZ magnet and some temperature correlation functions”, Theoret. and Math. Phys., 169:2 (2011), 1517–1529 | DOI | DOI | MR | Zbl
[99] V. Korepin, J. Terilla, “Thermodynamic interpretation of the quantum error correcting criterion”, Quantum Inf. Process., 1:4 (2002), 225–242 | DOI | MR
[100] F. C. Alcaraz, R. Z. Bariev, “An exactly solvable constrained XXZ chain”, Statistical physics on the eve of the 21st century, In honour of J. B. McGuire on the occasion of his 65th birthday, Ser. Adv. Statist. Mech., 14, World Sci. Publ., River Edge, NJ, 1999, 412–424 | MR | Zbl
[101] N. I. Abarenkova, A. G. Pronko, “Temperature correlation function in the absolutely anisotropic XXZ Heisenberg magnet”, Theoret. and Math. Phys., 131:2 (2002), 690–703 | DOI | DOI | MR | Zbl
[102] V. O. Tarasov, L. A. Takhtadzhyan, L. D. Faddeev, “Local Hamiltonians for integrable quantum models on a lattice”, Theoret. and Math. Phys., 57:2 (1983), 1059–1073 | DOI | MR
[103] A. G. Izergin, N. A. Kitanin, N. A. Slavnov, “On correlation functions of the XY-model”, J. Math. Sci. (N. Y.), 88:2 (1998), 224–232 | DOI | MR | Zbl
[104] M. Katori, H. Tanemura, “Scaling limit of vicious walks and two-matrix model”, Phys. Rev. E, 66:1 (2002), 011105, 12 pp. | DOI
[105] M. Katori, H. Tanemura, T. Nagao, N. Komatsuda, “Vicious walks with a wall, noncolliding meanders, and chiral and Bogoliubov–de Gennes random matrices”, Phys. Rev. E, 68:2 (2003), 021112, 16 pp. | DOI
[106] T. C. Dorlas, A. M. Povolotsky, V. B. Priezzhev, “From vicious walkers to TASEP”, J. Stat. Phys., 135:3 (2009), 483–517 | DOI | MR | Zbl
[107] M. L. Mehta, Random matrices, 2nd ed., Academic Press, Inc., Boston, MA, 1991, xviii+562 pp. | MR | Zbl
[108] I. Gessel, G. Viennot, “Binomial determinants, paths, and hook length formulae”, Adv. in Math., 58:3 (1985), 300–321 | DOI | MR | Zbl
[109] N. M. Bogoliubov, C. Malyshev, “A combinatorial interpretation of the scalar products of state vectors of integrable models”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXIII, Zap. nauch. sem. POMI, 421, POMI, SPb., 2014, 33–46 | Zbl
[110] E. W. Barnes, “The theory of the $G$-function”, Quart. J. Pure and Appl. Math., 31 (1900), 264–314 | Zbl
[111] V. S. Adamchik, Contributions to the theory of the Barnes function, 2003, 18 pp. http://repository.cmu.edu/compsci/87
[112] G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim, I. V. Grigorieva, “Square ice in graphene nanocapillaries”, Nature, 519:7544 (2015), 443–445 | DOI
[113] A. Klimyk, K. Schmüdgen, Quantum groups and their representations, Texts Monogr. Phys., Springer-Verlag, Berlin, 1997, xx+552 pp. | DOI | MR | Zbl
[114] J. Goldman, G.-C. Rota, “On the foundations of combinatorial theory. IV. Finite vector spaces and Eulerian generating functions”, Studies in Appl. Math., 49:3 (1970), 239–258 | DOI | MR | Zbl
[115] D. P. Zhelobenko, A. I. Shtern, Predstavleniya grupp Li, Nauka, M., 1983, 360 pp. | MR | Zbl
[116] P. P. Kulish, “Quantum difference nonlinear Schrödinger equation”, Lett. Math. Phys., 5:3 (1981), 191–197 | DOI | MR | Zbl
[117] R. K. Bullough, N. M. Bogoliubov, G. D. Pang, J. Timmonen, “Quantum repulsive nonlinear Schrödinger models and their ‘superconductivity’ ”, Chaos Solitons Fractals, 5:12 (1995), 2639–2656 | DOI | MR | Zbl
[118] C. Korff, “Noncommutative Schur polynomials and the crystal limit of the $U_q {\widehat{\mathfrak{sl}}}(2)$-vertex model”, J. Phys. A, 43:43 (2010), 434021, 20 pp. | DOI | MR | Zbl
[119] N. M. Bogoliubov, R. K. Bullough, G. D. Pang, “Exact solution of a $q$-boson hopping model”, Phys. Rev. B, 47:17 (1993), 11495–11498 | DOI
[120] N. M. Bogoliubov, R. K. Bullough, J. Timonen, “Critical behavior for correlated strongly coupled boson systems in $1+1$ dimensions”, Phys. Rev. Lett., 72:25 (1994), 3933–3936 | DOI | MR | Zbl
[121] N. Bogoliubov, J. Timonen, “Correlation functions for a strongly coupled boson system and plane partitions”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369:1939 (2011), 1319–1333 | DOI | MR | Zbl
[122] V. G. Drinfeld, “Kvantovye gruppy”, Differentsialnaya geometriya, gruppy Li i mekhanika. VIII, Zap. nauch. sem. LOMI, 155, Izd-vo “Nauka”, Leningr. otd., L., 1986, 18–49 ; V. G. Drinfel'd, “Quantum groups”, J. Soviet Math., 41:2 (1988), 898–915 ; Proceedings of the International Congress of Mathematicians (Berkeley, CA, 1986), v. I, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR | Zbl | DOI | MR | Zbl
[123] P. P. Kulish, E. V. Damaskinsky, “On the $q$-oscillator and the quantum algebra $\mathrm{su}_q(1,1)$”, J. Phys. A, 23:9 (1990), L415–L420 | DOI | MR | Zbl
[124] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, “Correlation functions for a strongly correlated boson system”, Nuclear Phys. B, 516:3 (1998), 501–528 | DOI | MR | Zbl
[125] P. Carruthers, M. M. Nieto, “Phase and angle variables in quantum mechanics”, Rev. Modern Phys., 40:2 (1968), 411–440 | DOI