@article{RM_2015_70_4_a7,
author = {I. S. Rezvyakova},
title = {On the zeros of the {Epstein} zeta-function on the critical line},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {785--787},
year = {2015},
volume = {70},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_4_a7/}
}
I. S. Rezvyakova. On the zeros of the Epstein zeta-function on the critical line. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 4, pp. 785-787. http://geodesic.mathdoc.fr/item/RM_2015_70_4_a7/
[1] H. Davenport, H. Heilbronn, J. Lond. Math. Soc., S1-11:3 (1936), 181–185 | DOI | MR | Zbl
[2] S. M. Voronin, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 142, 1976, 135–147 | MR | Zbl
[3] A. Selberg, Skr. Norske Vid. Akad. Oslo I, 1942:10 (1942), 59 pp. | MR | Zbl
[4] J. L. Hafner, Math. Ann., 264 (1983), 21–37 | DOI | MR | Zbl
[5] I. S. Rezvyakova, Matem. zametki, 88:3 (2010), 456–475 | DOI | MR | Zbl
[6] A. Selberg, Linear combinations of $\mathrm L$-functions and zeros on the critical line, 1999, 18 pp. http://www.msri.org/realvideo/ln/msri/1999/random/selberg/1/main.html
[7] E. Bomberi, A. Gosh, UMN, 66:2(398) (2011), 15–66 | DOI | MR | Zbl
[8] I. S. Rezvyakova, On the zeros of linear combinations of degree two $\mathrm{L}$-functions on the critical line. Selberg's approach, 2015, 22 pp., DOI: 10.13140/RG.2.1.1488.5281 | DOI
[9] A. Selberg, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR | Zbl
[10] A. Ghosh, J. Number Theory, 17:1 (1983), 93–102 | DOI | MR | Zbl