Asymptotic properties of the solution to the sequential testing problem on a finite horizon
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 4, pp. 775-776
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2015_70_4_a3,
author = {S. D. Gorban},
title = {Asymptotic properties of the solution to the sequential testing problem on a finite horizon},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {775--776},
year = {2015},
volume = {70},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_4_a3/}
}
TY - JOUR AU - S. D. Gorban TI - Asymptotic properties of the solution to the sequential testing problem on a finite horizon JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2015 SP - 775 EP - 776 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2015_70_4_a3/ LA - en ID - RM_2015_70_4_a3 ER -
S. D. Gorban. Asymptotic properties of the solution to the sequential testing problem on a finite horizon. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 4, pp. 775-776. http://geodesic.mathdoc.fr/item/RM_2015_70_4_a3/
[1] P. V. Gapeev, G. Peskir, “The Wiener sequential testing problem with finite horizon”, Stochastics Stochastics Rep., 76:1 (2004), 59–75 | DOI | MR | Zbl
[2] D. Helermont, Stochastic processes and related distributions, YATS Finances Technologies, 2004, 19 pp. http://www.yats.com/doc/stochastic-processes-en.pdf
[3] G. Peskir, A. N. Shiryaev, Optimal stopping and free-boundary problems, Lectures Math. ETH Zurich, Birkhäuser Verlag, Basel, 2006, xxii+500 pp. | MR | Zbl
[4] A. Wald, Sequential analysis, John Wiley Sons, Inc., New York; Chapman Hall, Ltd., London, 1947, xii+212 pp. | MR | MR | Zbl | Zbl