@article{RM_2015_70_4_a2,
author = {Yu. A. Neretin},
title = {Infinite symmetric groups and combinatorial constructions of topological field theory type},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {715--773},
year = {2015},
volume = {70},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_4_a2/}
}
TY - JOUR AU - Yu. A. Neretin TI - Infinite symmetric groups and combinatorial constructions of topological field theory type JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2015 SP - 715 EP - 773 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2015_70_4_a2/ LA - en ID - RM_2015_70_4_a2 ER -
Yu. A. Neretin. Infinite symmetric groups and combinatorial constructions of topological field theory type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 4, pp. 715-773. http://geodesic.mathdoc.fr/item/RM_2015_70_4_a2/
[1] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85:1 (1964), 40–61 | DOI | MR | Zbl
[2] A. Lieberman, “The structure of certain unitary representations of infinite symmetric groups”, Trans. Amer. Math. Soc., 164 (1972), 189–198 | DOI | MR | Zbl
[3] A. M. Vershik, S. V. Kerov, “Characters and factor representations of the infinite symmetric group”, Soviet Math. Dokl., 23:2 (1981), 389–392 | MR | Zbl
[4] A. M. Vershik, “Totally nonfree actions and the infinite symmetric group”, Mosc. Math. J., 12:1 (2012), 193–212 | MR | Zbl
[5] A. M. Vershik, S. V. Kerov, “Asymptotic theory of characters of the symmetric group”, Funct. Anal. Appl., 15:4 (1981), 246–255 | DOI | MR | Zbl
[6] G. I. Ol'shanskii, “Unitary representations of $(G,K)$-pairs that are connected with the infinite symmetric group $S(\infty)$”, Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl
[7] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl
[8] M. Atiyah, “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 68 (1988), 175–186 | DOI | MR | Zbl
[9] C. Teleman, Five lectures on topological field theory, 2014, 36 pp. \par http://math.berkeley.edu/~teleman/math/barclect.pdf
[10] R. M. Switzer, Algebraic topology – homotopy and homology, Grundlehren Math. Wiss., 212, Springer-Verlag, New York–Heidelberg, 1975, xii+526 pp. | MR | MR | Zbl | Zbl
[11] G. B. Segal, “The definition of conformal field theory”, Differential geometrical methods in theoretical physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, Kluwer Acad. Publ., Dordrecht, 1988, 165–171 | MR | Zbl
[12] Yu. A. Neretin, “Holomorphic extensions of representations of the group of diffeomorphisms of the circle”, Math. USSR-Sb., 67:1 (1990), 75–97 | DOI | MR | Zbl
[13] J. C. Baez, “An introduction to spin foam models of $BF$ theory and quantum gravity”, Geometry and quantum physics (Schladming, 1999), Lecture Notes in Phys., 543, Springer, Berlin, 2000, 25–93 | DOI | MR | Zbl
[14] S. M. Natanzon, “Cyclic foam topological field theories”, J. Geom. Phys., 60:6-8 (2010), 874–883 | DOI | MR | Zbl
[15] Yu. A. Neretin, “Infinite tri-symmetric group, multiplication of double cosets, and checker topological field theories”, Int. Math. Res. Not. IMRN, 2012:3 (2012), 501–523 | MR | Zbl
[16] Yu. A. Neretin, Infinite symmetric group and combinatorial descriptions of semigroups of double cosets, 2011, 39 pp., arXiv: 1106.1161
[17] A. A. Gaifullin, Yu. A. Neretin, Infinite symmetric group and bordisms of pseudomanifolds, 2015, 14 pp., arXiv: 1501.04062
[18] J. Dixmier, Les $C^*$-algèbres et leurs représentations, Cahiers Scientifiques, XXIX, Gauthier-Villars Cie, Éditeur-Imprimeur, Paris, 1964, xi+382 pp. | MR | MR | Zbl | Zbl
[19] E. Thoma, “Eine Charakterisierung diskreter Gruppen vom Typ I”, Invent. Math., 6:3 (1968), 190–196 | DOI | MR | Zbl
[20] A. A. Kirillov, A. D. Gvishiani, Theorems and problems in functional analysis, Problem Books in Math., Springer-Verlag, New York–Berlin, 1982, ix+347 pp. | DOI | MR | MR | Zbl | Zbl
[21] D. A. Raikov, “O popolnenii topologicheskikh grupp”, Izv. AN SSSR. Ser. matem., 10:6 (1946), 513–528 | MR | Zbl
[22] N. Burbaki, Obschaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969, 392 pp. ; N. Bourbaki, Éléments de mathématique. Première partie. (Fascicule III.) Livre III. Topologie générale, Chap. 3: Groupes topologiques. Chap. 4: Nombres réels, Actualités Sci. Indust., 1143, 3ème éd., rev. et augm., Hermann, Paris, 1960, 236 pp. ; Chap. V: Groupes à un paramètre. Chap. VI: Espaces numériques et espaces projectifs. Chap. VII: Les groupes additifs $R^n$. Chap. VIII: Nombres complexes, Actualités Sci. Indust., 1235, 1963, 151 pp. | MR | Zbl | MR | Zbl | Zbl
[23] A. S. Kechris, C. Rosendal, “Turbulence, amalgamation, and generic automorphisms of homogeneous structures”, Proc. Lond. Math. Soc. (3), 94:2 (2007), 302–350 | DOI | MR | Zbl
[24] H. Becker, A. S. Kechris, The descriptive set theory of Polish groups actions, London Math. Soc. Lecture Note Ser., 232, Cambridge Univ. Press, Cambridge, 1996, xii+136 pp. | DOI | MR | Zbl
[25] T. Tsankov, “Automatic continuity for the unitary group”, Proc. Amer. Math. Soc., 141:10 (2013), 3673–3680 | DOI | MR | Zbl
[26] F. M. Goodman, P. de la Harpe, V. F. R. Jones, Coxeter graphs and towers of algebras, Math. Sci. Res. Inst. Publ., 14, Springer-Verlag, New York, 1989, x+288 pp. | DOI | MR | Zbl
[27] Yu. A. Neretin, Lectures on Gaussian integral operators and classical groups, EMS Ser. Lect. Math., Eur. Math. Soc. (EMS), Zürich, 2011, xii+559 pp. | DOI | MR | Zbl
[28] M. Krämer, “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen”, Compositio Math., 38:2 (1979), 129–153 | MR | Zbl
[29] G. I. Ol'shanskii, “Unitary representations of infinite dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 269–463 | MR | Zbl
[30] N. I. Nessonov, “Faktor-predstavleniya gruppy $\mathrm{GL}(\infty)$ i dopustimye predstavleniya $\mathrm{GL}(\infty)^X$. I”, Matem. fizika, analiz, geometriya. Kharkovskii matem. zhurn., 10:2 (2003), 167–187 ; “II”, 10:4, 524–556 | MR | Zbl | MR | Zbl
[31] Yu. A. Neretin, “Sphericity and multiplication of double cosets for infinite-dimensional classical groups”, Funct. Anal. Appl., 45:3 (2011), 225–239 | DOI | DOI | MR | Zbl
[32] Yu. A. Neretin, The subgroup $\mathrm{PSL}_2(\mathbb{R})$ is spherical in the group of diffeomorphisms of the circle, 2015, 6 pp., arXiv: 1501.05820
[33] A. Yu. Okounkov, “Thoma's theorem and representations of the infinite bisymmetric group”, Funct. Anal. Appl., 28:2 (1994), 100–107 | DOI | MR | Zbl
[34] Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Math. Soc. Monogr. (N. S.), 16, The Clarendon Press, Oxford Univ. Press, New York, 1996, xiv+417 pp. | MR | Zbl
[35] R. S. Ismagilov, “Elementary spherical functions on the group $SL(2,P)$ over a field $P$, which is not locally compact, with respect to the subgroup of matrices with integral elements”, Math. USSR-Izv., 1:2 (1967), 349–380 | DOI | MR | Zbl
[36] Yu. A. Neretin, “Multi-operator colligations and multivariate characteristic functions”, Anal. Math. Phys., 1:2-3 (2011), 121–138 | DOI | MR | Zbl
[37] Yu. A. Neretin, Multiplication of conjugacy classes, colligations, and characteristic functions of matrix argument, 2012 (v2 – 2015), 20 pp., arXiv: 1211.7091
[38] Yu. A. Neretin, “Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on Bruhat–Tits buildings”, Izv. Math., 79:3 (2015), 512–553 | DOI | DOI
[39] Yu. A. Neretin, “Categories of bistochastic measures, and representations of some infinite-dimensional groups”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 197–219 | DOI | MR | Zbl
[40] Yu. A. Neretin, “Spreading maps (polymorphisms), symmetries of Poisson processes, and matching summation”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. VII, Zap. nauch. sem. POMI, 292, POMI, SPb., 2002, 62–91 ; J. Math. Sci. (N. Y.), 126:2 (2005), 1077–1094 | MR | Zbl | DOI
[41] Yu. Neretin, “Symmetries of Gaussian measures and operator colligations”, J. Funct. Anal., 263:3 (2012), 782–802 | DOI | MR | Zbl
[42] Ş. Strătilă, D. Voiculescu, Representations of AF-algebras and of the group $U(\infty )$, Lecture Notes in Math., 486, Springer-Verlag, Berlin–New York, 1975, viii+169 pp. | DOI | MR | Zbl
[43] A. M. Vershik, S. V. Kerov, “Characters and factor representations of the infinite unitary group”, Soviet Math. Dokl., 26:3 (1982), 570–574 | MR | Zbl
[44] N. Obata, “Certain unitary representations of the infinite symmetric group. I”, Nagoya Math. J., 105 (1987), 109–119 | MR | Zbl
[45] G. I. Olshansky, “Unitary representations of the infinite symmetric group: a semigroup approach”, Representations of Lie groups and Lie algebras, Pt. 2 (Budapest, 1971), Akad. Kiadó, Budapest, 1985, 181–197 | MR | Zbl
[46] A. A. Kirillov, Elements of the theory of representations, Grundlehren Math. Wiss., 220, Springer-Verlag, Berlin–New York, 1976, xi+315 pp. | DOI | MR | MR | Zbl | Zbl
[47] J.-P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967, xii+135 pp. (not consecutively paged) | MR | Zbl | Zbl
[48] G. I. Ol'shanskii, “Infinite-dimensional classical groups of finite $r$-rank: description of representations and asymptotic theory”, Funct. Anal. Appl., 18:1 (1984), 22–34 | DOI | MR | Zbl
[49] Dzh. fon Neiman, “O beskonechnykh tenzornykh proizvedeniyakh”, Izbrannye trudy po funktsionalnomu analizu, 1, Nauka, M., 1987, 202–276; J. von Neumann, “On infinite direct products”, Compositio Math., 6 (1938), 1–77 ; reprinted in: Collected works, v. 3, Rings of operators, Pergamon Press, New York–Oxford–London–Paris, 1961, 323–399 | MR | Zbl | MR | Zbl
[50] G. V. Belyi, “On Galois extensions of a maximal cyclotomic field”, Math. USSR-Izv., 14:2 (1980), 247–256 | DOI | MR | Zbl
[51] G. V. Belyi, “Another proof of the three points theorem”, Sb. Math., 193:3 (2002), 329–332 | DOI | DOI | MR | Zbl
[52] Yu. A. Neretin, “Spectral data for a pair of matrices of order three and an action of the group $\mathrm{GL}(2,\mathbb Z)$”, Izv. Math., 75:5 (2011), 959–969 | DOI | DOI | MR | Zbl
[53] R. Brauer, “On algebras which are connected with the semisimple continuous groups”, Ann. of Math. (2), 38:4 (1937), 857–872 | DOI | MR | Zbl
[54] S. V. Kerov, “Realizations of representations of the Brauer semigroup”, J. Soviet Math., 47:2 (1989), 2503–2507 | DOI | MR | Zbl
[55] A. V. Dudko, N. I. Nessonov, Invariant states on the wreath product, 2009, 37 pp., arXiv: 0903.4987
[56] Yu. A. Neretin, “A remark on representations of infinite symmetric groups”, J. Math. Sci. (N. Y.), 190:3 (2013), 464–467 | DOI | MR | Zbl
[57] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. II, Grundlehren Math. Wiss., 152, Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Springer-Verlag, New York-Berlin, 1970, ix+771 pp. | MR | MR | Zbl
[58] G. Zeifert, V. Trelfall, Topologiya, GONTI, M.–L., 1938, 400 pp.; H. Seifert, W. Threlfall, Lehrbuch der Topologie, B. G. Teubner, Leipzig, 1934, iv+353 pp. ; H. Seifert, W. Threlfall, A textbook of topology, Pure Appl. Math., 89, Academic Press, Inc., New York–London, 1980, xvi+437 СЃ. | Zbl | MR | Zbl
[59] A. Gaifullin, “Universal realisators for homology classes”, Geom. Topol., 17:3 (2013), 1745–1772 | DOI | MR | Zbl
[60] M. Goresky, R. MacPherson, “Intersection homology theory”, Topology, 19:2 (1980), 135–162 | DOI | MR | Zbl
[61] M. Pezzana, “Diagrammi di Heegaard e triangolazione contratta”, Collection in memory of Enrico Bompiani, Boll. Un. Mat. Ital. (4), 12:3, suppl. (1975), 98–105 | MR | Zbl
[62] M. Ferri, “Una rappresentazione delle $n$-varietà topologiche triangolabili mediante grafi $(n+1)$-colorati”, Boll. Un. Mat. Ital. B (5), 13:1 (1976), 250–260 | MR | Zbl
[63] M. Ferri, C. Gagliardi, L. Grasselli, “A graph-theoretical representation of PL-manifolds: a survey on crystallizations”, Aequationes Math., 31:1 (1986), 121–141 | DOI | MR | Zbl
[64] A. Gaifullin, “Combinatorial realisation of cycles and small covers”, European Congress of Mathematics, Proceedings of the 6th congress (6ECM) (Kraków, 2–7 July, 2012), Eur. Math. Soc., Zürich, 2013, 315–330 ; 2012, 14 pp., arXiv: 1204.0208 | DOI | Zbl
[65] N. I. Nessonov, “Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups”, Sb. Math., 203:3 (2012), 424–458 | DOI | DOI | MR | Zbl
[66] N. I. Nessonov, “KMS states on $\mathfrak{S}_\infty$ invariant with respect to the Young subgroups”, Funct. Anal. Appl., 47:2 (2013), 127–137 | DOI | DOI | MR | Zbl