Mots-clés : algebraic action
@article{RM_2015_70_4_a1,
author = {D. Lind and K. Schmidt},
title = {A survey of algebraic actions of the discrete {Heisenberg} group},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {657--714},
year = {2015},
volume = {70},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_4_a1/}
}
D. Lind; K. Schmidt. A survey of algebraic actions of the discrete Heisenberg group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 4, pp. 657-714. http://geodesic.mathdoc.fr/item/RM_2015_70_4_a1/
[1] R. L. Adler, A. G. Konheim, M. H. McAndrew, “Topological entropy”, Trans. Amer. Math. Soc., 114:2 (1965), 309–319 | DOI | MR | Zbl
[2] G. R. Allan, “Ideals of vector-valued functions”, Proc. London Math. Soc. (3), 18:2 (1968), 193–216 | DOI | MR | Zbl
[3] J. Anderson, W. Paschke, “The rotation algebra”, Houston J. Math., 15:1 (1989), 1–26 | MR | Zbl
[4] G. Atkinson, “A class of transitive cylinder transformations”, J. London Math. Soc. (2), 17:2 (1978), 263–270 | DOI | MR | Zbl
[5] C. Béguin, A. Valette, A. Zuk, “On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper's operator”, J. Geom. Phys., 21:4 (1997), 337–356 | DOI | MR | Zbl
[6] A. S. Besicovitch, “A problem on topological transformations of the plane. II”, Proc. Cambridge Philos. Soc., 47 (1951), 38–45 | DOI | MR | Zbl
[7] L. Bowen, “Entropy for expansive algebraic actions of residually finite groups”, Ergodic Theory Dynam. Systems, 31:3 (2011), 703–718 | DOI | MR | Zbl
[8] R. Bowen, “Entropy for group endomorphisms and homogeneous spaces”, Trans. Amer. Math. Soc., 153 (1971), 401–414 | DOI | MR | Zbl
[9] D. W. Boyd, “Kronecker's theorem and Lehmer's problem for polynomials in several variables”, J. Number Theory, 13:1 (1981), 116–121 | DOI | MR | Zbl
[10] D. W. Boyd, “Uniform approximation to Mahler's measure in several variables”, Canad. Math. Bull., 41:1 (1998), 125–128 | DOI | MR | Zbl
[11] N.-P. Chung, H. Li, “Homoclinic groups, IE groups, and expansive algebraic actions”, Invent. Math., 199:3 (2015), 805–858 ; (2011 (v3 – 2014)), 49 pp., arXiv: 1103.1567 | DOI | MR | Zbl
[12] P. J. Cohen, “A note on constructive methods in Banach algebras”, Proc. Amer. Math. Soc., 12 (1961), 159–163 | DOI | MR | Zbl
[13] J. B. Conway, A course in functional analysis, Grad. Texts in Math., 96, 2nd ed., Springer-Verlag, New York, 1990, xvi+399 pp. | MR | Zbl
[14] P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 2000, vi+310 pp. | MR | Zbl
[15] Ch. Deninger, “Fuglede–Kadison determinants and entropy for actions of discrete amenable groups”, J. Amer. Math. Soc., 19:3 (2006), 737–758 | DOI | MR | Zbl
[16] Ch. Deninger, “Determinants on von Neumann algebras, Mahler measure and Ljapunov exponents”, J. Reine Angew. Math., 651 (2011), 165–185 | DOI | MR | Zbl
[17] Ch. Deninger, K. Schmidt, “Expansive algebraic actions of discrete residually finite amenable groups and their entropy”, Ergodic Theory Dynam. Systems, 27:3 (2007), 769–786 | DOI | MR | Zbl
[18] M. Einsiedler, H. Rindler, “Algebraic actions of the discrete Heisenberg group and other non-abelian groups”, Aequationes Math., 62:1-2 (2001), 117–135 | DOI | MR | Zbl
[19] M. Einsiedler, K. Schmidt, “Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions”, Dinamicheskie sistemy i smezhnye voprosy, Sbornik statei. K 60-letiyu so dnya rozhdeniya akademika Dmitriya Viktorovicha Anosova, Tr. MIAN, 216, Nauka, M., 1997, 265–284 | MR | Zbl
[20] K. Fra̧czek, M. Lemańczyk, “On symmetric logarithm and some old examples in smooth ergodic theory”, Fund. Math., 180:3 (2003), 241–255 | DOI | MR | Zbl
[21] B. Fuglede, R. V. Kadison, “Determinant theory in finite factors”, Ann. of Math. (2), 55:3 (1952), 520–530 | DOI | MR | Zbl
[22] H. Furstenberg, “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Systems Theory, 1 (1967), 1–49 | DOI | MR | Zbl
[23] A. O. Gelfond, Transcendental and algebraic numbers, Dover Publications, Inc., New York, 1960, vii+190 pp. | MR | MR | Zbl | Zbl
[24] M. Göll, K. Schmidt, E. Verbitskiy, “Algebraic actions of the discrete Heisenberg group: expansiveness and homoclinic points”, Indag. Math. (N. S.), 25:4 (2014), 713–744 | DOI | MR | Zbl
[25] M. Göll, K. Schmidt, E. Verbitskiy, A Wiener lemma for the discrete Heisenberg group: invertibility criteria and applications to algebraic dynamics, preprint
[26] M. Göll, E. Verbitskiy, Homoclinic points of principal algebraic actions, preprint
[27] W. H. Gottschalk, G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., 36, Amer. Math. Soc., Providence, RI, 1955, vii+151 pp. | MR | Zbl
[28] D. Gretete, “Random walk on a discrete Heisenberg group”, Rend. Circ. Mat. Palermo (2), 60:3 (2011), 329–335 | DOI | MR | Zbl
[29] P. R. Halmos, “On automorphisms of compact groups”, Bull. Amer. Math. Soc., 49 (1943), 619–624 | DOI | MR | Zbl
[30] B. Hayes, Ergodicity of nilpotent group actions, Gauss's lemma and mixing in the Heisenberg group, Senior thesis, Univ. of Washington, Seattle, 2009, 21 pp.
[31] B. Hayes, Mixing principal algebraic actions of torsion-free nilpotent groups, preprint
[32] J. W. Jenkins, “An amenable group with a nonsymmetric group algebra”, Bull. Amer. Math. Soc., 75 (1969), 357–360 | DOI | MR | Zbl
[33] I. Kaplansky, “Groups with representations of bounded degree”, Canadian J. Math., 1 (1949), 105–112 | DOI | MR | Zbl
[34] I. Kaplansky, Fields and rings, Univ. of Chicago Press, Chicago, IL–London, 1969, ix+198 pp. | MR | Zbl
[35] R. Kenyon, A. Vershik, “Arithmetic construction of sofic partitions of hyperbolic toral automorphisms”, Ergodic Theory Dynam. Systems, 18:2 (1998), 357–372 | DOI | MR | Zbl
[36] B. Kitchens, K. Schmidt, “Automorphisms of compact groups”, Ergodic Theory Dynam. Systems, 9:4 (1989), 691–735 | DOI | MR | Zbl
[37] F. Ledrappier, “Un champ markovien peut être d'entropie nulle et mélangeant”, C. R. Acad. Sci. Paris Sér. A-B, 287:7 (1978), A561–A563 | MR | Zbl
[38] H. Li, “Compact group automorphisms, addition formulas and Fuglede–Kadison determinants”, Ann. of Math. (2), 176:1 (2012), 303–347 | DOI | MR | Zbl
[39] H. Li, J. Peterson, K. Schmidt, “Ergodicity of principal algebraic group actions”, Recent trends in ergodic theory and dynamical systems, Contemp. Math., 631, Amer. Math. Soc., Providence, RI, 2015, 201–210 | DOI
[40] H. Li, A. Thom, “Entropy, determinants, and $L^2$-torsion”, J. Amer. Math. Soc., 27:1 (2014), 239–292 | DOI | MR | Zbl
[41] D. Lind, K. Schmidt, “Homoclinic points of algebraic $\mathbb{Z}^d$-actions”, J. Amer. Math. Soc., 12:4 (1999), 953–980 | DOI | MR | Zbl
[42] D. Lind, K. Schmidt, E. Verbitskiy, “Entropy and growth rate of periodic points of algebraic $\mathbb{Z}^d$-actions”, Dynamical numbers – interplay between dynamical systems and number theory, Contemp. Math., 532, Amer. Math. Soc., Providence, RI, 2010, 195–211 | DOI | MR | Zbl
[43] D. Lind, K. Schmidt, E. Verbitskiy, “Homoclinic points, atoral polynomials, and periodic points of algebraic $\mathbb{Z}^d$-actions”, Ergodic Theory Dynam. Systems, 33:4 (2013), 1060–1081 | DOI | MR | Zbl
[44] D. Lind, K. Schmidt, T. Ward, “Mahler measure and entropy for commuting automorphisms of compact groups”, Invent. Math., 101:3 (1990), 593–629 | DOI | MR | Zbl
[45] D. A. Lind, T. Ward, “Automorphisms of solenoids and $p$-adic entropy”, Ergodic Theory Dynam. Systems, 8:3 (1988), 411–419 | DOI | MR | Zbl
[46] E. Lindenstrauss, B. Weiss, “Mean topological dimension”, Israel J. Math., 115 (2000), 1–24 | DOI | MR | Zbl
[47] W. Lück, $L^2$-invariants: theory and applications to geometry and $K$-theory, Ergeb. Math. Grenzgeb. (3), 44, Springer-Verlag, Berlin, 2002, xvi+595 pp. | DOI | MR | Zbl
[48] K. W. MacKenzie, “Prime ideals in skew Laurent polynomial rings”, Proc. Edinburgh Math. Soc. (2), 36:2 (1993), 299–317 | DOI | MR | Zbl
[49] K. Mahler, “An application of Jensen's formula to polynomials”, Mathematika, 7:2 (1960), 98–100 | DOI | MR | Zbl
[50] K. Mahler, “On some inequalities for polynomials in several variables”, J. London Math. Soc., 37:1 (1962), 341–344 | DOI | MR | Zbl
[51] M. S. Montgomery, “Left and right inverses in group algebras”, Bull. Amer. Math. Soc., 75:3 (1969), 539–540 | DOI | MR | Zbl
[52] J. Moulin Ollagnier, Ergodic theory and statistical mechanics, Lecture Notes in Math., 1115, Springer-Verlag, Berlin, 1985, vi+147 pp. | MR | Zbl
[53] D. S. Ornstein, B. Weiss, “Entropy and isomorphism theorems for actions of amenable groups”, J. Analyse Math., 48 (1987), 1–141 | DOI | MR | Zbl
[54] V. I. Oseledets, “A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Moscow Math. Soc., 19 (1968), 197–231 | MR | Zbl
[55] D. S. Passman, “Idempotents in group rings”, Proc. Amer. Math. Soc., 28:2 (1971), 371–374 | DOI | MR | Zbl
[56] D. S. Passman, The algebraic structure of group rings, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York–London–Sydney, 1977, xiv+720 pp. | MR | Zbl
[57] K. Purbhoo, “A Nullstellensatz for amoebas”, Duke Math. J., 141:3 (2008), 407–445 | DOI | MR | Zbl
[58] D. J. Rudolph, K. Schmidt, “Almost block independence and Bernoullicity of $\mathbb{Z}^d$-actions by automorphisms of compact abelian groups”, Invent. Math., 120:3 (1995), 455–488 | DOI | MR | Zbl
[59] K. Schmidt, “Automorphisms of compact abelian groups and affine varieties”, Proc. London Math. Soc. (3), 61:3 (1990), 480–496 | DOI | MR | Zbl
[60] K. Schmidt, Dynamical systems of algebraic origin, Progr. Math., 128, Birkhäuser Verlag, Basel, 1995, xviii+310 pp. | MR | Zbl
[61] K. Schmidt, “Algebraic coding of expansive group automorphisms and two-sided beta-shifts”, Monatsh. Math., 129:1 (2000), 37–61 | DOI | MR | Zbl
[62] N. A. Sidorov, “Bijective and general arithmetic codings for Pisot toral automorphisms”, J. Dynam. Control Systems, 7:4 (2001), 447–472 | DOI | MR | Zbl
[63] N. Sidorov, A. Vershik, “Bijective arithmetic codings of hyperbolic automorphisms of the 2-torus, and binary quadratic forms”, J. Dynam. Control Systems, 4:3 (1998), 365–399 | DOI | MR | Zbl
[64] C. J. Smyth, “A Kronecker-type theorem for complex polynomials in several variables”, Canad. Math. Bull., 24:4 (1981), 447–452 | DOI | MR | Zbl
[65] C. J. Smyth, “On measures of polynomials in several variables”, Bull. Austral. Math. Soc., 23:1 (1981), 49–63 | DOI | MR | Zbl
[66] R. K. Thomas, “The addition theorem for the entropy of transformations of $G$-spaces”, Trans. Amer. Math. Soc., 160 (1971), 119–130 | DOI | MR | Zbl
[67] A. M. Vershik, “Arithmetic isomorphism of hyperbolic toral automorphisms and sofic shifts”, Funct. Anal. Appl., 26:3 (1992), 170–173 | DOI | MR | Zbl
[68] T. B. Ward, Q. Zhang, “The Abramov–Rokhlin entropy addition formula for amenable group actions”, Monatsh. Math., 114:3-4 (1992), 317–329 | DOI | MR | Zbl
[69] B. Weiss, “Monotileable amenable groups”, Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser. 2, 202, Amer. Math. Soc., Providence, RI, 2001, 257–262 | MR | Zbl
[70] S. A. Yuzvinskii, “Metric properties of endomorphisms of compact groups”, Amer. Math. Soc. Transl. Ser. 2, 66, Amer. Math. Soc., Providence, RI, 1968, 63–98 | MR | Zbl
[71] S. A. Yuzvinskii, “Computing the entropy of a group of endomorphisms”, Siberian Math. J., 8 (1967), 172–178 | DOI | MR | Zbl