@article{RM_2015_70_4_a0,
author = {M. L. Gromov},
title = {Colourful categories},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {591--655},
year = {2015},
volume = {70},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_4_a0/}
}
M. L. Gromov. Colourful categories. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 4, pp. 591-655. http://geodesic.mathdoc.fr/item/RM_2015_70_4_a0/
[1] A. Akopyan, R. Karasev, A. Volovikov, Borsuk–Ulam type theorems for metric spaces, 2012, 11 pp., arXiv: 1209.1249
[2] A. Bak, M. Morimoto, F. Ushitaki (eds.), Current trends in transformation groups, $K$-Monogr. Math., 7, Kluwer Acad. Publ., Dordrecht, 2002, xii+249 pp. | DOI | MR | Zbl
[3] A. Barvinok, Measure concentration lecture notes, 2005, 119 pp. http://www.math.lsa.umich.edu/<nobr>$\sim$</nobr>barvinok/total710.pdf
[4] V. Bergelson, “Ultrafilters, IP sets, dynamics, and combinatorial number theory”, Ultrafilters across mathematics, Contemp. Math., 530, Amer. Math. Soc., Providence, RI, 2010, 23–47 | DOI | MR | Zbl
[5] P. V. M. Blagojević, R. Karasev, “Extensions of theorems of Rattray and Makeev”, Topol. Methods Nonlinear Anal., 40:1 (2012), 189–213 ; (2010 (v2 – 2012)), 15 pp., arXiv: 1011.0869 | MR | Zbl
[6] J. Bourgain, “On finite dimensional homogeneous Banach spaces”, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., 1317, Springer, Berlin, 1988, 232–238 | DOI | MR | Zbl
[7] J. Bourgain, J. Lindenstrauss, V. D. Milman, “Minkowski sums and symmetrizations”, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., 1317, Springer, Berlin, 1988, 44–66 | DOI | MR | Zbl
[8] T. C. Brown, P. J.-S. Shiue, “On the history of van der Waerden's theorem on arithmetic progressions”, Tamkang J. Math., 32:4 (2001), 335–341 | MR | Zbl
[9] B. Bukh, R. Karasev, “Suborbits in Knaster's problem”, Bull. London Math. Soc., 46:2 (2014), 269–278 ; (2012 (v3 – 2013)), 10 pp., arXiv: 1212.5351 | DOI | MR | Zbl
[10] D. Burago, S. Ivanov, S. Tabachnikov, “Topological aspects of the Dvoretzky theorem”, J. Topol. Anal., 2:4 (2010), 453–467 ; (2009), 17 pp., arXiv: 0907.5041 | DOI | MR | Zbl
[11] T. J. Carlson, “Some unifying principles in Ramsey theory”, Discrete Math., 68:2-3 (1988), 117–169 | DOI | MR | Zbl
[12] H. Cartan, “Filtres et ultrafiltres”, C. R. Acad. Sci. Paris, CCV (1937), 777–779
[13] D. Conlon, J. Fox, B. Sudakov, “Hypergraph Ramsey numbers”, J. Amer. Math. Soc., 23:1 (2010), 247–266 ; 20 pp. http://people.maths.ox.ac.uk/<nobr>$\sim$</nobr>conlond/offdiagonal-hypergraph.pdf | DOI | MR | Zbl
[14] J. Davidoff, P. Sarnak, A. Valette, Elementary number theory, group theory and Ramanujan graphs, London Math. Soc. Stud. Texts, 55, Cambridge Univ. Press, Cambridge, 2003, 156 pp. | DOI | MR | Zbl
[15] P. Dodos, Some recent results in Ramsey Theory, 2015, 11 pp. http://users.uoa.gr/<nobr>$\sim$</nobr>pdodos/Publications/35-DK
[16] V. L. Dol'nikov, R. N. Karasev, “Dvoretzky type theorems for multivariate polynomials and sections of convex bodies”, Geom. Funct. Anal., 21:2 (2011), 301–318 ; (2010 (v3 – 2011)), 17 pp., arXiv: 1009.0392 | DOI | MR | Zbl
[17] A. Dvoretzky, “Some results on convex bodies and Banach spaces”, Proceedings of the International Symposium on Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, 123–160 | MR | Zbl
[18] H. Furstenberg, Y. Katznelson, “Idempotents in compact semigroups and Ramsey theory”, Israel J. Math., 68:3 (1989), 257–270 | DOI | MR | Zbl
[19] H. Furstenberg, B. Weiss, “Topological dynamics and combinatorial number theory”, J. Analyse Math., 34 (1978), 61–85 | DOI | MR | Zbl
[20] J. Geelen, P. Nelson, “A density Hales–Jewett theorem for matroids”, J. Combin. Theory Ser. B, 112 (2015), 70–77 ; (2012), 9 pp., arXiv: 1210.4522 | DOI | MR | Zbl
[21] J.-Y. Girard, Proof theory and logical complexity, Stud. Proof Theory Monogr., 1, Bibliopolis, Naples, 1987, 505 pp. | MR | Zbl
[22] R. L. Graham, K. Leeb, B. L. Rothschild, “Ramsey's theorem for a class of categories”, Adv. Math., 8 (1972), 417–433 | DOI | MR | Zbl
[23] R. L. Graham, B. L. Rothschild, “Ramsey's theorem for $n$-parameter sets”, Trans. Amer. Math. Soc., 159 (1971), 257–292 | DOI | MR | Zbl
[24] R. L. Graham, B. L. Rothschild, “A short proof of van der Waerden's theorem on arithmetic progressions”, Proc. Amer. Math. Soc., 42:2 (1974), 385–386 | DOI | MR | Zbl
[25] R. L. Graham, J. H. Spencer, “A general Ramsey product theorem”, Proc. Amer. Math. Soc., 73:1 (1979), 137–139 | DOI | MR | Zbl
[26] M. Gromov, “Filling Riemannian manifolds”, J. Differential Geom., 18:1 (1983), 1–147 | MR | Zbl
[27] M. Gromov, “Dimension, non-linear spectra and width”, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., 1317, Springer, Berlin, 1988, 132–184 | DOI | MR | Zbl
[28] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progr. Math., 152, Birkhäuser Boston, Inc., Boston, MA, 1999, xx+585 pp. | MR | Zbl
[29] M. Gromov, “Endomorphisms of symbolic algebraic varieties”, J. Eur. Math. Soc. (JEMS), 1:2 (1999), 109–197 | DOI | MR | Zbl
[30] M. Gromov, “Spaces and questions”, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal., Special volume, Part I, 2000, 118–161 | DOI | MR | Zbl
[31] M. Gromov, “Isoperimetry of waists and concentration of maps”, Geom. Funct. Anal., 13:1 (2003), 178–215 | DOI | MR | Zbl
[32] M. Gromov, “Entropy and isoperimetry for linear and non-linear group actions”, Groups Geom. Dyn., 2:4 (2008), 499–593 | DOI | MR | Zbl
[33] M. Gromov, “Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry”, Geom. Funct. Anal., 20:2 (2010), 416–526 | DOI | MR | Zbl
[34] M. Gromov, “Manifolds: Where do we come from? What are we? Where are we going”, The Poincaré conjecture, Clay Math. Proc., 19, Amer. Math. Soc., Providence, RI, 2014, 81–144 ; 2010, 68 pp. http://www.ihes.fr/<nobr>$\sim$</nobr>gromov/PDF/manifolds-Poincare.pdf | MR | Zbl
[35] M. Gromov, V. D. Milman, “A topological application of the isoperimetric inequality”, Amer. J. Math., 105:4 (1983), 843–854 | DOI | MR | Zbl
[36] L. J. Halbeisen, Combinatorial set theory. With a gentle introduction to forcing, Springer Monogr. Math., Springer, London, 2012, xvi+453 pp. | DOI | MR | Zbl
[37] N. Hindman, “Ultrafilters and combinatorial number theory”, Number theory (Southern Illinois Univ., Carbondale, IL, 1979), Lecture Notes in Math., 751, Springer, Berlin, 1979, 119–184 | DOI | MR | Zbl
[38] A. S. Kechris, V. G. Pestov, S. Todorcevic, “Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups”, Geom. Funct. Anal., 15:1 (2005), 106–189 | DOI | MR | Zbl
[39] A. Ya. Khinchin, Three pearls of number theory, Graylock Press, Rochester, N. Y., 1952, 64 pp. | MR | MR | Zbl | Zbl
[40] B. Klartag, “On nearly radial marginals of high-dimensional probability measures”, J. Eur. Math. Soc. (JEMS), 12:3 (2010), 723–754 ; (2008 (v2 – 2009)), 32 pp., arXiv: 0810.4700 | DOI | MR | Zbl
[41] M. Ledoux, The concentration of measure phenomenon, Math. Surveys Monogr., 89, Amer. Math. Soc., Providence, RI, 2001, x+181 pp. | MR | Zbl
[42] P. Lévy, Problèmes concrets d'analyse fonctionnelle, 2nd ed., Gauthier-Villars, Paris, 1951, xiv+484 pp. | MR | MR | Zbl
[43] G. L. Litvinov, “Tropical mathematics, idempotent analysis, classical mechanics and geometry”, Spectral theory and geometric analysis, Contemp. Math., 535, Amer. Math. Soc., Providence, RI, 2011, 159–186 | DOI | MR | Zbl
[44] J. Matoušek, Lectures on topological methods in combinatorics and geometry, Universitext, 2nd corr. print., Springer-Verlag, Berlin, 2008, xii+214 pp. | MR | Zbl
[45] V. D. Milman, “New proof of the theorem of A. Dvoretzky on intersections of convex bodies”, Funct. Anal. Appl., 5:4 (1971), 288–295 | DOI | MR | Zbl
[46] V. D. Milman, “Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed space”, Proc. Amer. Math. Soc., 94:3 (1985), 445–449 | DOI | MR | Zbl
[47] V. D. Milman, “A few observations on the connections between local theory and some other fields”, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., 1317, Springer, Berlin, 1988, 283–289 | DOI | MR | Zbl
[48] D. Mubayi, V. Rödl, “On the chromatic number and independence number of hypergraph products”, J. Combin. Theory Ser. B, 97:1 (2007), 151–155 ; 2004, 6 pp. http://www.math.cmu.edu/<nobr>$\sim$</nobr>mubayi/papers/bergesimon.pdf | DOI | MR | Zbl
[49] M. B. Nathanson, Additive number theory. The classical bases, Grad. Texts in Math., 164, Springer-Verlag, New York, 1996, xiv+342 pp. | DOI | MR | Zbl
[50] A. Papadopoulos, “Hilbert's fourth problem”, Handbook of Hilbert geometry, IRMA Lect. Math. Theor. Phys., 22, Eur. Math. Soc., Zürich, 2014, 391–431 ; 2013, 43 pp., arXiv: 1312.3172 | DOI | MR | Zbl
[51] J. Paris, L. Harrington, “A mathematical incompleteness in Peano arithmetic”, Handbook of mathematical logic, Stud. Logic Found. Math., 90, ed. J. Barwise, North-Holland Publ. Co., Amsterdam–New York–Oxford, 1977, 1133–1142 | DOI | MR | Zbl | Zbl
[52] V. Pestov, Dynamics of infinite-dimensional groups. The Ramsey–Dvoretzky–Milman phenomenon, Univ. Lecture Ser., 40, Amer. Math. Soc., Providence, RI, 2006, viii+192 pp. | DOI | MR | Zbl
[53] G. Pisier, “Probabilistic methods in the geometry of Banach spaces”, Probability and analysis (Varenna, 1985), Lecture Notes in Math., 1206, Springer, Berlin, 1986, 167–241 | DOI | MR | Zbl
[54] D. H. J. Polymath, “A new proof of the density Hales–Jewett theorem”, Ann. of Math. (2), 175:3 (2012), 1283–1327 ; (2009 (v2 – 2010)), 34 pp., arXiv: 0910.3926 | DOI | MR | Zbl
[55] E. Schmidt, “Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionszahl”, Math. Z., 49 (1943/44), 1–109 | DOI | MR | Zbl
[56] I. Schur, “Über die Kongruenz $x^m+y^m\equiv z^m \pmod p$”, Jahresber. Deutsch. Math.-Verein., 25 (1916), 114–117 | Zbl
[57] S. Shelah, “Primitive recursive bounds for van der Waerden numbers”, J. Amer. Math. Soc., 1:3 (1988), 683–697 | DOI | MR | Zbl
[58] A. Soifer, The mathematical coloring book. Mathematics of coloring and the colorful life of its creators, Springer, New York, 2009, xxx+607 pp. | DOI | MR | Zbl
[59] A. Soifer (ed.), Ramsey theory. Yesterday, today, and tomorrow (Rutgers Univ., Piscataway, NJ, May 27–29, 2009), Progr. Math., 285, Birkhäuser/Springer, New York, 2011, xiv+189 pp. | DOI | MR | Zbl
[60] S. Solecki, “Abstract approach to finite Ramsey theory and a self-dual Ramsey theorem”, Adv. Math., 248 (2013), 1156–1198 ; (2011 (v3 – 2013)), 50 pp., arXiv: 1104.3950 | DOI | MR | Zbl
[61] J. H. Spencer, “Ramsey's theorem for spaces”, Trans. Amer. Math. Soc., 249:2 (1979), 363–371 | DOI | MR | Zbl
[62] M. Talagrand, “Concentration of measure and isoperimetric inequalities in product spaces”, Inst. Hautes Études Sci. Publ. Math., 81:1 (1995), 73–205 | DOI | MR | Zbl
[63] S. B. Todorcevic, Introduction to Ramsey spaces, Ann. of Math. Stud., 174, Princeton Univ. Press, Princeton, NJ, 2010, viii+287 pp. | DOI | MR | Zbl
[64] R. Vershynin, Lectures in geometric functional analysis, 2009, 76 pp. http://www-personal.umich.edu/<nobr>$\sim$</nobr>romanv/papers/GFA-book/GFA-book.pdf