Sergei Konstantinovich Godunov has turned 85 years old
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 3, pp. 561-590 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2015_70_3_a4,
     author = {V. N. Belykh and K. V. Brushlinskii and V. L. Vaskevich and S. P. Kiselev and A. N. Kraiko and A. G. Kulikovskii and V. I. Mali and V. V. Pukhnachov and E. I. Romensky and V. S. Ryaben'kii},
     title = {Sergei {Konstantinovich} {Godunov} has turned 85 years old},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {561--590},
     year = {2015},
     volume = {70},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_3_a4/}
}
TY  - JOUR
AU  - V. N. Belykh
AU  - K. V. Brushlinskii
AU  - V. L. Vaskevich
AU  - S. P. Kiselev
AU  - A. N. Kraiko
AU  - A. G. Kulikovskii
AU  - V. I. Mali
AU  - V. V. Pukhnachov
AU  - E. I. Romensky
AU  - V. S. Ryaben'kii
TI  - Sergei Konstantinovich Godunov has turned 85 years old
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 561
EP  - 590
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_3_a4/
LA  - en
ID  - RM_2015_70_3_a4
ER  - 
%0 Journal Article
%A V. N. Belykh
%A K. V. Brushlinskii
%A V. L. Vaskevich
%A S. P. Kiselev
%A A. N. Kraiko
%A A. G. Kulikovskii
%A V. I. Mali
%A V. V. Pukhnachov
%A E. I. Romensky
%A V. S. Ryaben'kii
%T Sergei Konstantinovich Godunov has turned 85 years old
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 561-590
%V 70
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2015_70_3_a4/
%G en
%F RM_2015_70_3_a4
V. N. Belykh; K. V. Brushlinskii; V. L. Vaskevich; S. P. Kiselev; A. N. Kraiko; A. G. Kulikovskii; V. I. Mali; V. V. Pukhnachov; E. I. Romensky; V. S. Ryaben'kii. Sergei Konstantinovich Godunov has turned 85 years old. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 3, pp. 561-590. http://geodesic.mathdoc.fr/item/RM_2015_70_3_a4/

[1] S. K. Godunov, “O zadache Minkovskogo”, Dokl. AN SSSR, 59:9 (1948), 1525–1528 | MR | Zbl

[2] S. K. Godunov, Raznostnye metody resheniya uravnenii gazovoi dinamiki, Lektsii dlya studentov NGU, Izd-vo Novosib. un-ta, Novosibirsk, 1962, 96 pp.

[3] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[4] S. K. Godunov, Mezhdunar. simpozium “Metod Godunova v gazovoi dinamike” (Michigan. un-t, mai 1997), Nauch. kn., Novosibirsk, 1997, 40 pp.

[5] S. K. Godunov, “Reminiscences about difference schemes”, J. Comput. Phys., 153:1 (1999), 6–25 | DOI | MR | Zbl

[6] S. K. Godunov, Reminiscences about difference schemes, Preprint No 6666, INRIA, France, 2008, 24 pp. http://hal.inria.fr/docs/00/32/63/77/PDF/RR-6666.pdf

[7] I. M. Gel'fand, “Some problems in the theory of quasilinear equations”, Amer. Math. Soc. Transl. Ser. 2, 29, Amer. Math. Soc., Providence, RI, 1963, 295–381 | MR | Zbl

[8] S. K. Godunov, “Termodinamika gazov i differentsialnye uravneniya”, UMN, 14:5(89) (1959), 97–116 | MR | Zbl

[9] S. K. Godunov, “On the concept of generalized solution”, Soviet Math. Dokl., 1 (1960), 1194–1196 | MR | Zbl

[10] S. K. Godunov, Yu. D. Manuzina, M. A. Nazar'eva, “Experimental analysis of convergence of the numerical solution to a generalized solution in fluid dynamics”, Comput. Math. Math. Phys., 51:1 (2011), 88–95 | DOI | MR | Zbl

[11] S. K. Godunov, “An interesting class of quasilinear systems”, Soviet Math. Dokl., 2 (1961), 947–949 | MR | Zbl

[12] V. P. Kolgan, “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uchenye zapiski TsAGI, 3:6 (1972), 68–77; V. P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics”, J. Comput. Phys., 230:7 (2011), 2384–2390 ; “РљРѕРЅРμчно-разностная СЃС...РμРјР° для расчРμта РґРІСѓРјРμСЂРЅС‹С... разрывныС... СЂРμС€РμРЅРёРNo РЅРμстационарноРNo газовоРNo динамики”, 6:1 (1975), 9–14 | DOI | MR | Zbl

[13] N. I. Tillyaeva, “Obobschenie modifitsirovannoi skhemy S. K. Godunova na proizvolnye neregulyarnye setki”, Uchenye zapiski TsAGI, 17:2 (1986), 18–26

[14] V. I. Kopchenov, A. N. Kraiko, “A monotonic second-order difference scheme for hyperbolic systems with two independent variables”, U.S.S.R. Comput. Math. Math. Phys., 23:4 (1983), 50–56 | DOI | MR | Zbl

[15] A. V. Rodionov, “Monotonic scheme of the second order of approximation for the continuous calculation of non-equilibrium flows”, U.S.S.R. Comput. Math. Math. Phys., 27:2 (1987), 175–180 | DOI | MR | Zbl

[16] B. van Leer, “Towards the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, J. Comput. Phys., 135:2 (1997), 229–248 | DOI | Zbl

[17] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:3 (1983), 357–393 | DOI | MR | Zbl

[18] P. Colella, P. R. Woodward, “The piecewise parabolic method (PPM) for gas-dynamic simulations”, J. Comput. Phys., 54:1 (1984), 174–201 | DOI | Zbl

[19] A. Harten, B. Engquist, S. Osher, S. R. Chakravarthy, “Uniformly high order accurate essentially non-oscillatory schemes. III”, J. Comput. Phys., 71:2 (1987), 231–303 | DOI | MR | Zbl

[20] Chi-Wang Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes. II”, J. Comput. Phys., 83:1 (1989), 32–78 | DOI | MR | Zbl

[21] Xu-Dong Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115:1 (1994), 202–212 | DOI | MR | Zbl

[22] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, A practical introduction, 3rd ed., Springer-Verlag, Berlin, 2009, xxiv+724 pp. | DOI | MR | Zbl

[23] J. Glimm, “Solutions in the large for nonlinear hyperbolic systems of equations”, Comm. Pure Appl. Math., 18:4 (1965), 697–715 | DOI | MR | Zbl

[24] S. K. Godunov, A. V. Zabrodin, G. P. Prokopov, “A computational scheme for two-dimensional nonstationary problems of gas dynamics and calculation of the flow from a shock wave approaching a stationary state”, U.S.S.R. Comput. Math. Math. Phys., 1:4 (1962), 1187–1219 | DOI | MR | Zbl

[25] M. Ya. Ivanov, A. N. Kraiko, “Chislennoe reshenie pryamoi zadachi o smeshannom techenii v soplakh”, Izv. AN SSSR. Mekh. zhidk. i gaza, 1969, no. 5, 77–83

[26] M. Ya. Ivanov, A. N. Kraiko, N. V. Mikhailov, “A method of through computation for two- and three-dimensional supersonic flows. I”, U.S.S.R. Comput. Math. Math. Phys., 12:2 (1972), 196–221 | DOI | DOI | MR | MR | Zbl

[27] T. D. Taylor, B. S. Masson, “Application of the unsteady numerical method of Godunov to computation of supersonic flows past bell-shaped bodies”, J. Comput. Phys., 5:3 (1970), 443–454 | DOI | Zbl

[28] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[29] S. Godunov, A. Zabrodine, M. Ivanov, A. Kraiko, G. Prokopov, Résolution numérique des problèmes multidimensionnels de la dynamique des gaz, Mir, Moscou, 1979, 414 pp. | MR | Zbl

[30] S. K. Godunov, “On nonunique ‘blurring’ of discontinuities in solutions of quasilinear systems”, Soviet Math. Dokl., 2 (1961), 43–44 | MR | Zbl

[31] S. K. Godunov, “The problem of a generalized solution in the theory of quasilinear equations and in gas dynamics”, Russian Math. Surveys, 17:3 (1962), 145–156 | DOI | MR | Zbl

[32] S. R. de Groot, P. Mazur, Non-equilibrium thermodynamics, Series in Physics, North-Holland Publishing Co., Amsterdam; Interscience Publishers Inc., New York, 1962, x+510 pp. | MR

[33] K. O. Friedrichs, P. D. Lax, “Systems of conservation equations with a convex extension”, Proc. Natl. Acad. Sci. U.S.A., 68:8 (1971), 1686–1688 | DOI | MR | Zbl

[34] I. Müller, T. Ruggeri, Rational extended thermodynamics, Springer Tracts Nat. Philos., 37, 2nd ed., Springer-Verlag, New York, 1998, xvi+396 pp. | DOI | MR | Zbl

[35] P. T. Barton, R. Deiterding, D. Meiron, D. Pullin, “Eulerian adaptive finite-difference method for high-velocity impact and penetration problems”, J. Comput. Phys., 240 (2013), 76–99 | DOI | MR

[36] N. Favrie, S. L. Gavrilyuk, “Diffuse interface model for compressible fluid-compressible elastic-plastic solid interaction”, J. Comput. Phys., 231:7 (2012), 2695–2723 | DOI | MR | Zbl

[37] S. K. Godunov, “Simmetricheskaya forma uravnenii magnitnoi gidrodinamiki”, Chisl. metody mekhaniki sploshnoi sredy, 3:1 (1972), 26–34

[38] S. K. Godunov, E. I. Romensky, “Thermodynamical foundations for special evolution differential equations of continuous media”, Trends in applications of mathematics to mechanics (Lisbon, 1994), Pitman Monogr. Surveys Pure Appl. Math., 77, Longman, Harlow, 1995, 25–35 | MR | Zbl

[39] S. K. Godunov, E. I. Romensky, “Thermodynamics and wellposedness of differential equations of continuous media”, Advanced mathematics, computations and applications (AMCA-95), NCC Publisher, Novosibirsk, 1995, 126–127

[40] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kn., Novosibirsk, 1998, 267 pp. | Zbl

[41] S. K. Godunov, E. I. Romensky, Elements of continuum mechanics and conservation laws, Kluwer Academic/Plenum Publishers, New York, 2003, viii+258 pp. | DOI | MR | Zbl

[42] S. K. Godunov, Elementy mekhaniki sploshnoi sredy, Nauka, M., 1978, 303 pp. | MR

[43] S. K. Godunov, T. Yu. Mikhailova, E. I. Romenskiĭ, “Systems of thermodynamically coordinated laws of conservation invariant under rotations”, Sib. Math. J., 37:4 (1996), 690–705 | DOI | MR | Zbl

[44] S. K. Godunov, V. M. Gordienko, “The simplest Galilean-invariant and thermodynamically consistent conservation laws”, J. Appl. Mech. Tech. Phys., 43:1 (2002), 1–12 | DOI | MR | Zbl

[45] S. K. Godunov, V. M. Gordienko, “Complicated structures of Galilean-invariant conservation laws”, J. Appl. Mech. Tech. Phys., 43:2 (2002), 175–189 | DOI | MR | Zbl

[46] S. K. Godunov, I. M. Peshkov, “Symmetrization of the nonlinear system of gas dynamics equations”, Sib. Math. J., 49:5 (2008), 829–834 | DOI | MR | Zbl

[47] S. K. Godunov, I. M. Peshkov, “Symmetric hyperbolic equations in the nonlinear elasticity theory”, Comput. Math. Math. Phys., 48:6 (2008), 975–995 | DOI | MR | Zbl

[48] S. K. Godunov, “Galilean-invariant and thermodynamically consistent model of a composite isotropic medium”, J. Appl. Mech. Tech. Phys., 45:5 (2004), 613–621 | DOI | MR | Zbl

[49] S. K. Godunov, “A new version of the thermodynamically consistent model of Maxwell viscosity”, J. Appl. Mech. Tech. Phys., 45:6 (2004), 775–783 | DOI | MR | Zbl

[50] S. K. Godunov, U. M. Sultangazin, “On discrete models of the kinetic Boltzmann equation”, Russian Math. Surveys, 26:3 (1971), 1–56 | DOI | MR | Zbl

[51] S. K. Godunov, U. M. Sultangazin, “The dissipativity of V. S. Vladimirov's boundary conditions for a symmetric system of the method of spherical harmonics”, U.S.S.R. Comput. Math. Math. Phys., 11:3 (1971), 183–202 | DOI | MR | Zbl

[52] S. K. Godunov, Les équations symétriques hyperboliques et la thermodynamique, Séminaire de mécanique des fluides numérique, Institut Henri Poincaré, 2008, 27 pp. http://www-mecaflu.cea.fr/streaming/domain20/2008/03/m348/index.html

[53] S. K. Godunov, I. M. Peshkov, “Thermodynamically consistent nonlinear model of an elastoplastic Maxwell medium”, Comput. Math. Math. Phys., 50:8 (2010), 1409–1426 | DOI | MR | Zbl

[54] S. K. Godunov, “Thermodynamic formalization of the fluid dynamics equations for a charged dielectric in an electromagnetic field”, Comput. Math. Math. Phys., 52:5 (2012), 787–799 | DOI | MR | Zbl

[55] S. K. Godunov, “About inclusion of Maxwell's equations in systems relativistic of the invariant equations”, Comput. Math. Math. Phys., 53:8 (2013), 1179–1182 | DOI | DOI | MR | Zbl

[56] S. K. Godunov, S. P. Kiselev, I. M. Kulikov, V. I. Mali, “Numerical and experimental simulation of wave formation during explosion welding”, Proc. Steklov Inst. Math., 281 (2013), 12–26 | DOI | Zbl

[57] S. K. Godunov, I. M. Kulikov, “Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee”, Comput. Math. Math. Phys., 54:6 (2014), 1012–1024 | DOI | DOI | MR | Zbl

[58] J. Frenkel, Kinetic theory of liquids, Clarendon Press, Oxford, 1946, 488 pp. | MR | Zbl

[59] S. K. Godunov, V. V. Denisenko, N. S. Kozin, N. K. Kuz'mina, “Use of relaxation viscoelastic model in calculating uniaxial homogeneous strains and refining the interpolation equations for Maxwellian viscosity”, J. Appl. Mech. Tech. Phys., 16:5 (1975), 811–814 | DOI

[60] S. K. Godunov, A. A. Deribas, N. S. Kozin, “Wave formation in explosive welding”, J. Appl. Mech. Tech. Phys., 12:3 (1971), 398–406 | DOI

[61] S. K. Godunov, A. A. Deribas, V. I. Mali, “Influence of material viscosity on the jet formation process during collisions of metal plates”, Combustion, Explosion and Shock Waves, 11:1 (1975), 1–13 | DOI

[62] S. K. Godunov, A. A. Deribas, A. V. Zabrodin, N. S. Kozin, “Hydrodynamics effects in colliding solids”, J. Comput. Phys., 5:3 (1970), 517–539 | DOI

[63] S. K. Godunov, A. A. Deribas, I. D. Zakharenko, V. I. Mali, “Investigation of the viscosity of metals in high-velocity collisions”, Combustion, Explosion and Shock Waves, 7:1 (1971), 114–118 | DOI

[64] S. K. Godunov, A. F. Demchuk, N. S. Kozin, V. I. Mali, “Interpolation formulas for Maxwell viscosity of certain metals as a function of shear-strain intensity and temperature”, J. Appl. Mech. Tech. Phys., 15:4 (1974), 526–529 | DOI

[65] S. K. Godunov, E. I. Romenskii, “Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates”, J. Appl. Mech. Tech. Phys., 13:6 (1972), 868–884 | DOI

[66] S. K. Godunov, N. N. Sergeev-Al'bov, “Equations of the linear theory of elasticity with point Maxwellian sources of stress relaxation”, J. Appl. Mech. Tech. Phys., 18:4 (1977), 549–561 | DOI | MR

[67] L. A. Merzhievskii, A. D. Resnyanskii, V. M. Titov, “Strength effects in inverted jet formation”, Soviet Phys. Dokl., 31 (1986), 812–814

[68] Fundamentals of shaped charges, eds. W. P. Walters, J. A. Zukas, John Wiley and Sons, New York, 1989, 398 pp.

[69] S. K. Godunov, N. S. Kozin, E. I. Romenskii, “Equations of state of the elastic energy of metals in the case of a nonspherical strain tensor”, J. Appl. Mech. Tech. Phys., 15:2 (1974), 246–250 | DOI

[70] S. K. Godunov, “Galilean-invariant and thermodynamically consistent model of a composite isotropic medium”, J. Appl. Mech. Tech. Phys., 45:5 (2004), 613–621 | DOI | MR | Zbl

[71] S. K. Godunov, “New version of the thermodynamically consistent model of Maxwell viscosity”, J. Appl. Mech. Tech. Phys., 45:6 (2004), 775–783 | DOI | MR | Zbl

[72] D. P. Babii, S. K. Godunov, V. T. Zhukov, O. B. Feodoritova, “On the difference approximations of overdetermined hyperbolic equations of classical mathematical physics”, Comput. Math. Math. Phys., 47:3 (2007), 427–441 | DOI | MR | Zbl

[73] S. K. Godunov, N. K. Kozin, “Shock structure in a viscoelastic medium with a nonlinear dependence of the Maxwellian viscosity on the parameters of the material”, J. Appl. Mech. Tech. Phys., 15:5 (1974), 666–671 | DOI

[74] E. I. Romenskii, “Metod rascheta dvumernykh dinamicheskikh uravnenii nelineinoi uprugoplasticheskoi sredy Maksvella”, Tr. In-ta matem. SO AN SSSR, 18, Novosibirsk, 1990, 83–100 | MR | Zbl

[75] Computational fluid dynamics 2010, Proceedings of the 6th International Conference on Computational Fluid Dynamics, ICCFD6 (St. Petersburg, Russia, July 12–16, 2010), ed. A. Kuzmin, Springer, Heidelberg, 2011, xxix+954 pp. ; http://elementy.ru/events/429132 | DOI | MR | Zbl

[76] S. K. Godunov, S. P. Kiselev, I. M. Kulikov, V. I. Mali, Modelirovanie udarno-volnovykh protsessov v uprugoplasticheskikh materialakh na razlichnykh (atomnyi, mezo i termodinamicheskii) strukturnykh urovnyakh, Izhevskii institut kompyuternykh issledovanii, M., Izhevsk, 2014, 296 pp.; http://www.rfbr.ru/rffi/ru/books/o_1920745

[77] I. A. Adamskaya, S. K. Godunov, “The method of spherical harmonics in a problem of critical paramaters”, U.S.S.R. Comput. Math. Math. Phys., 4:3 (1964), 104–120 | DOI | MR | Zbl

[78] S. K. Godunov, “A method of orthogonal successive substitution for the solution of systems of difference equations”, U.S.S.R. Comput. Math. Math. Phys., 2:6 (1963), 1151–1165 | DOI | MR | Zbl

[79] S. K. Godunov, G. P. Prokopov, “A method of minimal iterations for evaluating the eigenvalues of an elliptic operator”, U.S.S.R. Comput. Math. Math. Phys., 10:5 (1970), 141–154 | DOI | MR | Zbl

[80] C. C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices, Ph. D. Thesis, Univ. of London, London, 1971, 161 pp.

[81] C. C. Paige, “Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix”, J. Inst. Math. Appl., 18:3 (1976), 341–349 | DOI | MR | Zbl

[82] S. K. Godunov, A. G. Antonov, O. P. Kiriljuk, V. I. Kostin, Guaranteed accuracy in numerucal linear algebra, Math. Appl., 252, Kluwer Acad. Publ. Group, Dordrecht, 1993, xii+535 pp. | DOI | MR | MR | Zbl | Zbl

[83] S. K. Godunov, Lektsii po sovremennym aspektam lineinoi algebry, Nauch. kn., Novosibirsk, 2002, 202 pp.

[84] S. K. Godunov, “The problem of guaranteed precision in numerical methods of linear algebra”, Amer. Math. Soc. Transl. Ser. 2, 147, Amer. Math. Soc., Providence, RI, 1990, 65–73 | MR | Zbl

[85] S. K. Godunov, Modern aspects of linear algebra, Transl. Math. Monogr., 175, Amer. Math. Soc., Providence, RI, 1998, xvi+303 pp. | MR | Zbl | Zbl

[86] S. K. Godunov, “Problem of the dichotomy of the spectrum of a matrix”, Sib. Math. J., 27:5 (1986), 649–660 | DOI | MR | Zbl

[87] A. Ya. Bulgakov, S. K. Godunov, “Circular dichotomy of the spectrum of a matrix”, Sib. Math. J., 29:5 (1988), 734–744 | DOI | MR | Zbl

[88] S. K. Godunov, A. Ya. Bulgakov, “Raschet polozhitelno opredelennykh reshenii uravneniya Lyapunova”, Tr. In-ta matem. SO AN SSSR, 6, Novosibirsk, 1985, 17–38 | MR | Zbl

[89] S. K. Godunov, “Spectral portraits of matrices and criteria of spectrum dichotomy”, Computer arithmetic and enclosure methods (Oldenburg, 1991), North-Holland, Amsterdam, 1992, 25–35 | MR | Zbl

[90] L. N. Trefethen, “Pseudospectra of matrices”, Numerical analysis 1991 (Dundee, 1991), Pitman Res. Notes Math. Ser., 260, Longman Sci. Tech., Harlow, 1992, 234–266 | MR | Zbl

[91] L. N. Trefethen, M. Embree, Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton Univ. Press, Princeton, NJ, 2005, xviii+606 pp. | MR | Zbl

[92] S. K. Godunov, V. S. Ryaben'kii, “Spectral stability criteria for boundary-value problems for non-self-adjoint difference equations”, Russian Math. Surveys, 18:3 (1965), 1–12 | DOI | MR | Zbl

[93] S. K. Godunov, M. Sadkane, “Elliptic dichotomy of a matrix spectrum”, Linear Algebra Appl., 248 (1996), 205–232 | DOI | MR | Zbl

[94] A. Ya. Bulgakov, “An estimate of the Green matrix, continuity of the dichotomy parameter”, Sib. Math. J., 30:1 (1989), 139–142 | DOI | MR | Zbl

[95] S. K. Godunov, M. Sadkane, “Spectral analysis of symplectic matrices with application to the theory of parametric resonance”, SIAM J. Matrix Anal. Appl., 28:4 (2006), 1083–1096 , (electronic) | DOI | MR | Zbl

[96] S. K. Godunov, V. B. Kurzin, V. G. Bunkov, M. Sadkane, “Application of a new mathematical tool ‘one-dimensional spectral portraits of matrices’ to the problem of aeroelastic vibrations of turbine-blade cascades”, Turbomachines: aeroelasticity, aeroacoustics, and unsteady aerodynamics, Torus Press Ltd., Moscow, 2006, 9–23

[97] S. K. Godunov, V. B. Kurzin, V. G. Bunkov, M. Sadkein, “Primenenie novogo matematicheskogo apparata ‘odnomernye spektralnye portrety matrits’ k resheniyu problemy aerouprugikh kolebanii reshetok lopastei”, Uchenye zapiski TsAGI, 40:6 (2009), 3–13

[98] S. K. Godunov, V. I. Kostin, A. D. Mitchenko, “Computation of an eigenvector of a symmetric tridiagonal matrix”, Sib. Math. J., 26:5 (1985), 684–696 | DOI | MR | Zbl

[99] S. K. Godunov, A. N. Malyshev, “On a special basis of approximate eigenvectors with local supports for an isolated narrow cluster of eigenvalues of a symmetric tridiagonal matrix”, Comput. Math. Math. Phys., 48:7 (2008), 1089–1099 | DOI | MR

[100] S. K. Godunov, Yu. M. Nechepurenko, “Bounds for the principal and stiff components based on the integral performance criterion for dichotomy”, Comput. Math. Math. Phys., 40:1 (2000), 32–39 | MR | Zbl

[101] S. K. Godunov, V. S. Ryabenki, Theory of difference schemes. An introduction, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley and Sons, New York, 1964, 289 pp. | MR | MR | Zbl | Zbl

[102] S. K. Godunov, V. S. Ryaben'kii, Difference schemes. An introduction to the underlying theory, Stud. Math. Appl., 19, North-Holland Publishing Co., Amsterdam, 1987, xviii+489 pp. | MR | MR | Zbl | Zbl

[103] P. P. Belinskii, S. K. Godunov, J. B. Ivanov, I. K. Yanenko, “The use of a class of quasiconformal mappings to construct difference nets in domains with curvilinear boundaries”, U.S.S.R. Comput. Math. Math. Phys., 15:6 (1975), 133–144 | DOI | MR | Zbl

[104] S. K. Godunov, E. I. Romenskii, G. A. Chumakov, “Postroenie raznostnykh setok v slozhnykh oblastyakh s pomoschyu kvazikonformnykh otobrazhenii”, Tr. In-ta matem. SO AN SSSR, 18, Novosibirsk, 1990, 75–83 | MR | Zbl

[105] S. K. Godunov, V. M. Gordienko, G. A. Chumakov, “Quasi-isometric parametrization of a curvilinear quadrangle and a metric of constant curvature”, Sib. Adv. Math., 5:2 (1995), 48–67 | MR | MR | Zbl

[106] S. K. Godunov, V. M. Gordienko, G. A. Chumakov, “Variational principle for 2-D regular quasi-isometric grid generation”, Int. J. Comput. Fluid Dyn., 5:1-2 (1995), 99–118 | DOI

[107] S. K. Godunov, O. B. Feodoritova, V. T. Zhukov, “On one class of quasi-isometric grids”, Advances in grid generation, Nova Sci. Publ., New York, 2007, 53–69 | MR | Zbl

[108] Godunov Sergei Konstantinovich: bibliograficheskii ukazatel, Sost. M. L. Konovodchenko, 2-e izd., pererab. i dop., ed. V. N. Belykh, Izd-vo In-ta matem., Novosibirsk, 2009, 77 pp.

[109] H.-O. Kreiss, “Initial boundary value problems for hyperbolic systems”, Commun. Pure Appl. Math., 23 (1970), 277–298 | DOI | MR | Zbl | Zbl

[110] R. Sakamoto, “Mixed problems for hyperbolic equations. I, II”, J. Math. Kyoto Univ., 10 (1970), 349–373, 403–417 | MR | MR | MR | Zbl | Zbl

[111] S. K. Godunov, Uravneniya matematicheskoi fiziki, Ucheb. posobie dlya un-tov, Nauka, M., 1971, 416 pp. ; S. Godounov, Eq́uations de la physique mathématique, Mir, Moscou, 1973, 452 pp. ; S. K. Godunov, Ecuaciones de la física matemática, Mir, Moscú, 1978, 478 pp. ; S. K. Godunow, Równania fizyki matematycznej, Wydawnictwa Naukowo-Techniczne, Warszawa, 1975, 467 СЃ. | MR | Zbl | MR | Zbl | Zbl | MR

[112] S. K. Godunov, Uravneniya matematicheskoi fiziki, Ucheb. posobie dlya un-tov, 2-e izd., ispr. i dop., Nauka, M., 1979, 391 pp. | MR

[113] S. K. Godunov, V. M. Gordienko, “Smeshannaya zadacha dlya volnovogo uravneniya”, Differentsialnye uravneniya s chastnymi proizvodnymi, Tr. ceminara S. L. Soboleva, 2, Izd-vo In-ta matem. SO AN SSSR, Novosibirsk, 1977, 5–31 | MR | Zbl

[114] S. K. Godunov, “Smeshannaya zadacha dlya giperbolicheskikh sistem uravnenii”, Nelineinye volny deformatsii, Materialy simpoziuma, v. 1, In-t kibernetiki AN ESSR, Tallin, 1978, 39–48

[115] S. K. Godunov, V. I. Kostin, “Reduction of a hyperbolic equation to a symmetric hyperbolic system in the case of two space variables”, Sib. Math. J., 21:6 (1980), 755–768 | DOI | MR | Zbl

[116] S. K. Godunov, “Integraly energii uravnenii giperbolicheskikh po Petrovskomu”, Comment. Math. Univ. Carolin., 26:1 (1985), 41–74 | MR | Zbl

[117] A. M. Blokhin, Integraly energii v zadache ob ustoichivosti udarnoi volny, Izd-vo In-ta matem. SO AN SSSR, Novosibirsk, 1982, 176 pp. | Zbl

[118] V. M. Gordienko, “Un problème mixte pour l'équation vectorielle des ondes: cas de dissipation de l'énergie; cas mal posés”, C. R. Acad. Sci. Paris Sér. A-B, 288:10 (1979), A547–A550 | MR | Zbl

[119] V. M. Gordienko, “Symmetrization of a mixed problem for a hyperbolic equation of second order with two spatial variables”, Sib. Math. J., 22:2 (1981), 231–248 | DOI | MR | Zbl

[120] N. G. Marchuk, “On the existence of solutions of a mixed problem for the vector wave equation”, Soviet Math. Dokl., 21:3 (1980), 785–788 | MR | Zbl

[121] S. K. Godunov, “Garantirovannaya tochnost v nesimmetrichnykh spektralnykh zadachakh”, Dopolnenie v kn.: A. N. Malyshev, Vvedenie v vychislitelnuyu lineinuyu algebru. S prilozheniem algoritmov na FORTRANe, Nauka, Novosibirsk, 1991, 204–223 | MR | Zbl

[122] S. K. Godunov, Ordinary differential equations with constant coefficients, Transl. Math. Monogr., 169, Amer. Math. Soc., Providence, RI, 1997, x+282 pp. | MR | MR | Zbl | Zbl