Three-dimensional continued fractions and Kloosterman sums
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 3, pp. 483-556 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey is devoted to results related to metric properties of classical continued fractions and Voronoi–Minkowski three-dimensional continued fractions. The main focus is on applications of analytic methods based on estimates of Kloosterman sums. An apparatus is developed for solving problems about three-dimensional lattices. The approach is based on reduction to the preceding dimension, an idea used earlier by Linnik and Skubenko in the study of integer solutions of the determinant equation $\det X=P$, where $X$ is a $3\times 3$ matrix with independent coefficients and $P$ is an increasing parameter. The proposed method is used for studying statistical properties of Voronoi–Minkowski three-dimensional continued fractions in lattices with a fixed determinant. In particular, an asymptotic formula with polynomial lowering in the remainder term is proved for the average number of Minkowski bases. This result can be regarded as a three-dimensional analogue of Porter's theorem on the average length of finite continued fractions. Bibliography: 127 titles.
Keywords: three-dimensional continued fractions, lattices, Kloosterman sums, Gauss–Kuz'min statistics.
@article{RM_2015_70_3_a2,
     author = {A. V. Ustinov},
     title = {Three-dimensional continued fractions and {Kloosterman} sums},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {483--556},
     year = {2015},
     volume = {70},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_3_a2/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - Three-dimensional continued fractions and Kloosterman sums
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 483
EP  - 556
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_3_a2/
LA  - en
ID  - RM_2015_70_3_a2
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T Three-dimensional continued fractions and Kloosterman sums
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 483-556
%V 70
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2015_70_3_a2/
%G en
%F RM_2015_70_3_a2
A. V. Ustinov. Three-dimensional continued fractions and Kloosterman sums. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 3, pp. 483-556. http://geodesic.mathdoc.fr/item/RM_2015_70_3_a2/

[1] W. M. Schmidt, “The density of integer points on homogeneous varieties”, Acta Math., 154:3-4 (1985), 243–296 | DOI | MR | Zbl

[2] B. Z. Moroz, “On the number of integral points on a norm-form variety in a cube-like domain”, J. Number Theory, 27:1 (1987), 106–110 | DOI | MR | Zbl

[3] J. Franke, Yu. I. Manin, Yu. Tschinkel, “Rational points of bounded height on Fano varieties”, Invent. Math., 95:2 (1989), 421–435 | DOI | MR | Zbl

[4] Yu. V. Linnik, “Additive problems and eigenvalues of the modular operators”, Proceedings of the International Congress of Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 270–284 | MR | Zbl

[5] P. C. Sarnak, “Diophantine problems and linear groups”, Proceedings of the International Congress of Mathematicians (Kyoto, 1990), v. I, Math. Soc. Japan, Tokyo, 1991, 459–471 | MR | Zbl

[6] W. Duke, Z. Rudnick, P. Sarnak, “Density of integer points on affine homogeneous varieties”, Duke Math. J., 71:1 (1993), 143–179 | DOI | MR | Zbl

[7] V. A. Bykovskii, “O raspredelenii tselykh tochek na determinantnoi poverkhnosti”, Dalnevost. matem. zhurn., 14:2 (2014), 156–159

[8] Yu. V. Linnik, B. F. Skubenko, “Asimptoticheskoe raspredelenie tselochislennykh matrits tretego poryadka”, Vestn. Leningr. un-ta. Ser. matem., mekh., astron., 3:13 (1964), 25–36 | MR | Zbl

[9] Yu. V. Linnik, Ergodic properties of algebraic fields, Ergeb. Math. Grenzgeb., 45, Springer-Verlag, New York, 1968, ix+192 pp. | MR | MR | Zbl | Zbl

[10] Wee Teck Gan, Hee Oh, “Equidistribution of integer points on a family of homogeneous varieties: a problem of Linnik”, Compositio Math., 136:3 (2003), 323–352 | DOI | MR | Zbl

[11] B. F. Skubenko, “The distribution of integer matrices and calculation of the volume of the fundamental domain of a unimodular group of matrices”, Proc. Steklov Inst. Math., 80 (1965), 147–163 | MR | Zbl

[12] A. M. Istamov, “Asymptotics of second-order integral matrices lying in a given hyperbolic region and belonging to a given residue class”, J. Soviet Math., 19:2 (1982), 1085–1088 | DOI | MR | Zbl

[13] A. M. Istamov, “Asymptotic distribution of $n$-th-order integral matrices belonging to a given residue class”, J. Soviet Math., 25:2 (1984), 1030–1051 | DOI | MR | Zbl

[14] E. V. Podsypanin, “Distribution of integral points on the determinant surface”, J. Soviet Math., 19:2 (1982), 1088–1095 | DOI | MR | Zbl

[15] N. M. Korobov, Exponential sums and their applications, Math. Appl. (Soviet Ser.), 80, Kluwer Acad. Publ., Dordrecht, 1992, xvi+209 pp. | DOI | MR | MR | Zbl | Zbl

[16] I. E. Shparlinski, “Modular hyperbolas”, Jpn. J. Math., 7:2 (2012), 235–294 | DOI | MR | Zbl

[17] G. Voronoi, Ob odnom obobschenii algorifma nepreryvnykh drobei, Tipografiya Varshavskogo Uchebnogo Okruga, Varshava, 1896, 221 pp.

[18] G. F. Voronoi, Sobranie sochinenii, v. 1, Izd-vo AN USSR, Kiev, 1952, 399 pp. | MR | Zbl

[19] H. Minkowski, “Généralisation de la théorie des fractions continues”, Ann. Sci. École Norm. Sup. (3), 13 (1896), 41–60 | MR | Zbl

[20] B. N. Delone, D. K. Faddeev, “Teoriya irratsionalnostei tretei stepeni”, Tr. Matem. in-ta im. V. A. Steklova, 11, Izd-vo AN SSSR, M.–L., 1940, 3–340 | MR | Zbl

[21] B. N. Delone, Peterburgskaya shkola teorii chisel, Izd-vo AN SSSR, M.–L., 1947, 421 pp. | MR | Zbl

[22] H. Hancock, Development of the Minkowski geometry of numbers, v. 1, Dover Publications, Inc., New York, 1964, xix+452 pp. | MR | Zbl

[23] A. V. Ustinov, “O raspredelenii reshenii determinantnogo uravneniya”, Matem. sb., 206:7 (2015), 103–134 | DOI

[24] V. I. Bernik, A. V. Ustinov, “O raspredelenii tochek modulyarnoi giperboly”, Dalnevost. matem. zhurn., 14:2 (2014), 141–155

[25] H. Heilbronn, “On the average length of a class of finite continued fractions”, Abhandlungen aus Zahlentheorie und Analysis, Deutscher Verlag der Wissenschaften, Berlin, 1968, 87–96 | MR | Zbl

[26] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | DOI | MR | Zbl

[27] A. A. Illarionov, “The average number of relative minima of three-dimensional integer lattices of a given determinant”, Izv. Math., 76:3 (2012), 535–562 | DOI | DOI | MR | Zbl

[28] A. A. Illarionov, “On the statistical properties of Klein polyhedra in three-dimensional lattices”, Sb. Math., 204:6 (2013), 801–823 | DOI | DOI | MR | Zbl

[29] A. A. Illarionov, “A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction”, Sb. Math., 205:3 (2014), 419–431 | DOI | DOI | MR | Zbl

[30] A. A. Illarionov, “On the average number of best approximations of linear forms”, Izv. Math., 78:2 (2014), 268–292 | DOI | DOI | MR | Zbl

[31] B. V. Gnedenko, The theory of probability, Moscow, Mir, 1988, 392 pp. | Zbl | Zbl

[32] R. O. Kuz'min, “Sur un problème de Gauss”, Atti del Congresso Internazionale dei Matematici (Bologna, 1928), v. 6, Zanichelli, Bologna, 1932, 83–89 | Zbl

[33] P. Lévy, “Sur les lois de probabilité dont dépendent les quotients complets et incomplets d'une fraction continue”, Bull. Soc. Math. France, 57 (1929), 178–194 | MR | Zbl

[34] E. Wirsing, “On the theorem of Gauss–Kusmin–Lévy and a Frobenius-type theorem for function spaces”, Acta Arith., 24 (1973/1974), 507–528 | MR | Zbl

[35] K. I. Babenko, “On a problem of Gauss”, Soviet Math. Dokl., 19:1 (1978), 136–140 | MR | Zbl

[36] M. Iosifescu, C. Kraaikamp, Metrical theory of continued fractions, Math. Appl., 547, Kluwer Acad. Publ., Dordrecht, 2002, xx+383 pp. | DOI | MR | Zbl

[37] G. Lochs, “Statistik der Teilnenner der zu den echten Brüchen gehörigen regelmäßigen Kettenbrüche”, Monatsh. Math., 65:1 (1961), 27–52 | DOI | MR | Zbl

[38] R. Adler, M. Keane, M. Smorodinsky, “A construction of a normal number for the continued fraction transformation”, J. Number Theory, 13:1 (1981), 95–105 | DOI | MR | Zbl

[39] V. I. Arnold, Arnold's problems, Springer-Verlag, Berlin–Heidelberg; PHASIS, Moscow, 2004, xvi+639 pp. | MR | MR | Zbl | Zbl

[40] M. O. Avdeeva, V. A. Bykovskii, Reshenie zadachi Arnolda o statistikakh Gaussa–Kuzmina, Preprint IPM No 2002-8, Izd-vo “Dalnauka” DVO RAN, Vladivostok, 2002, 12 pp.

[41] M. O. Avdeeva, “On the statistics of partial quotients of finite continued fractions”, Funct. Anal. Appl., 38:2 (2004), 79–87 | DOI | DOI | MR | Zbl

[42] A. V. Ustinov, “On the statistical properties of finite continued fractions”, J. Math. Sci. (N. Y.), 137:2 (2006), 4722–4738 | DOI | MR | Zbl

[43] A. V. Ustinov, “On Gauss–Kuz'min statistics for finite continued fractions”, J. Math. Sci. (N. Y.), 146:2 (2007), 5771–5781 | DOI | MR | Zbl

[44] A. V. Ustinov, “On the number of solutions of the congruence $xy\equiv l\pmod{q}$ under the graph of a twice continuously differentiable function”, St. Petersburg Math. J., 20:5 (2009), 813–836 | DOI | MR | Zbl

[45] A. V. Ustinov, “Spin chains and Arnold's problem on the Gauss–Kuz'min statistics for quadratic irrationals”, Sb. Math., 204:5 (2013), 762–779 | DOI | DOI | MR | Zbl

[46] H. Petersson, “Über eine Funktion von G. Lochs und die Diskriminante der elliptischen Funktionen”, Monatsh. Math., 67:3 (1963), 243–258 | DOI | MR | Zbl

[47] A. V. Ustinov, “O statistikakh Gaussa–Kuzmina v korotkikh intervalakh”, Dalnevost. matem. zhurn., 11:1 (2011), 93–98 | MR | Zbl

[48] G. J. Rieger, “Über die mittlere Schrittanzahl bei Divisionsalgorithmen”, Math. Nachr., 82:1 (1978), 157–180 | DOI | MR | Zbl

[49] A. V. Ustinov, “The mean number of steps in the Euclidean algorithm with least absolute-value remainders”, Math. Notes, 85:1 (2009), 142–145 | DOI | DOI | MR | Zbl

[50] G. J. Rieger, “Ein Heilbronn–Satz für Kettenbrüche mit ungeraden Teilnennern”, Math. Nachr., 101:1 (1981), 295–307 | DOI | MR | Zbl

[51] A. V. Ustinov, “The mean number of steps in the Euclidean algorithm with odd partial quotients”, Math. Notes, 88:4 (2010), 574–584 | DOI | DOI | MR | Zbl

[52] F. P. Boca, J. Vandehey, “On certain statistical properties of continued fractions with even and with odd partial quotients”, Acta Arith., 156:3 (2012), 201–221 | DOI | MR | Zbl

[53] E. N. Zhabitskaya, “The average length of reduced regular continued fractions”, Sb. Math., 200:8 (2009), 1181–1214 | DOI | DOI | MR | Zbl

[54] D. A. Frolenkov, “Asymptotic behaviour of the first moment of the number of steps in the by-excess and by-deficiency Euclidean algorithms”, Sb. Math., 203:2 (2012), 288–305 | DOI | DOI | MR | Zbl

[55] D. E. Knuth, A. C. Yao, “Analysis of the subtractive algorithm for greatest common divisors”, Proc. Natl. Acad. Sci. U.S.A., 72:12 (1975), 4720–4722 | DOI | MR | Zbl

[56] E. N. Zhabitskaya, “Mean value of sums of partial quotients of continued fractions”, Math. Notes, 89:3 (2011), 450–454 | DOI | DOI | MR | Zbl

[57] O. A. Gorkusha, “O srednei dline diagonalnykh drobei Minkovskogo”, Dalnevost. matem. zhurn., 11:1 (2011), 10–27 | MR | Zbl

[58] O. A. Gorkusha, “O konechnykh tsepnykh drobyakh spetsialnogo vida”, Chebyshevskii sb., 9:1(25) (2008), 80–107 | MR | Zbl

[59] F. P. Boca, R. N. Gologan, A. Zaharescu, “The statistics of the trajectory of a certain billiard in a flat two-torus”, Comm. Math. Phys., 240:1-2 (2003), 53–73 | DOI | MR | Zbl

[60] F. P. Boca, A. Zaharescu, “The distribution of the free path lengths in the periodic two-dimensional Lorentz gas in the small-scatterer limit”, Comm. Math. Phys., 269:2 (2007), 425–471 | DOI | MR | Zbl

[61] V. A. Bykovskii, A. V. Ustinov, “The statistics of particle trajectories in the homogeneous Sinai problem for a two-dimensional lattice”, Funct. Anal. Appl., 42:3 (2008), 169–179 | DOI | DOI | MR | Zbl

[62] V. A. Bykovskii, A. V. Ustinov, “The statistics of particle trajectories in the inhomogeneous Sinai problem for a two-dimensional lattice”, Izv. Math., 73:4 (2009), 669–688 | DOI | DOI | MR | Zbl

[63] F. P. Boca, C. Cobeli, A. Zaharescu, “Distribution of lattice points visible from the origin”, Comm. Math. Phys., 213:2 (2000), 433–470 | DOI | MR | Zbl

[64] A. V. Ustinov, “O raspredelenii tochek tselochislennoi reshetki”, Dalnevost. matem. zhurn., 9:1-2 (2009), 176–181 | MR

[65] J. Bourgain, Ya. G. Sinai, “Limit behaviour of large Frobenius numbers”, Russian Math. Surveys, 62:4 (2007), 713–725 | DOI | DOI | MR | Zbl

[66] V. Shchur, Ya. Sinai, A. Ustinov, “Limiting distribution of Frobenius numbers for $n=3$”, J. Number Theory, 129:11 (2009), 2778–2789 | DOI | MR | Zbl

[67] A. V. Ustinov, “The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments”, Sb. Math., 200:4 (2009), 597–627 | DOI | DOI | MR | Zbl

[68] A. V. Ustinov, “On the distribution of Frobenius numbers with three arguments”, Izv. Math., 74:5 (2010), 1023–1049 | DOI | DOI | MR | Zbl

[69] D. A. Frolenkov, “The mean value of Frobenius numbers with three arguments”, Izv. Math., 76:4 (2012), 760–819 | DOI | DOI | MR | Zbl

[70] W. B. Jurkat, J. W. Van Horne, “The proof of the central limit theorem for theta sums”, Duke Math. J., 48:4 (1981), 873–885 | DOI | MR | Zbl

[71] W. B. Jurkat, J. W. Van Horne, “On the central limit theorem for theta series”, Michigan Math. J., 29:1 (1982), 65–77 | DOI | MR | Zbl

[72] W. B. Jurkat, J. W. Van Horne, “The proof of the central limit theorem for theta sums”, Duke Math. J., 48:4 (1981), 873–885 | DOI | MR | Zbl

[73] E. Demirci Akarsu, J. Marklof, “The value distribution of incomplete Gauss sums”, Mathematika, 59:2 (2013), 381–398 | DOI | MR | Zbl

[74] V. Baladi, B. Vallée, “Euclidean algorithms are Gaussian”, J. Number Theory, 110:2 (2005), 331–386 | DOI | MR | Zbl

[75] B. Vallée, “A unifying framework for the analysis of a class of Euclidean algorithms”, LATIN 2000: theoretical informatics, Proceedings of the 4th Latin American Symposium (Punta del Este, April 10–14, 2000), Lecture Notes in Comput. Sci., 1776, Springer-Verlag, Berlin, 2000, 343–354 | DOI | MR | Zbl

[76] B. Vallée, “Dynamical analysis of a class of Euclidean algorithms”, Theoret. Comput. Sci., 297:1-3 (2003), 447–486 | DOI | MR | Zbl

[77] J. Marklof, A. Strömbergsson, “The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems”, Ann. of Math. (2), 172:3 (2010), 1949–2033 | DOI | MR | Zbl

[78] J. Marklof, A. Strömbergsson, “The periodic Lorentz gas in the Boltzmann–Grad limit: asymptotic estimates”, Geom. Funct. Anal., 21:3 (2011), 560–647 | DOI | MR | Zbl

[79] J. Marklof, A. Strömbergsson, “Free path lengths in quasicrystals”, Comm. Math. Phys., 330:2 (2014), 723–755 | DOI | MR | Zbl

[80] J. Marklof, “The asymptotic distribution of Frobenius numbers”, Invent. Math., 181:1 (2010), 179–207 | DOI | MR | Zbl

[81] I. Aliev, M. Henk, “Integer knapsacks: average behavior of the Frobenius numbers”, Math. Oper. Res., 34:3 (2009), 698–705 | DOI | MR | Zbl

[82] I. Aliev, M. Henk, A. Hinrichs, “Expected Frobenius numbers”, J. Combin. Theory Ser. A, 118:2 (2011), 525–531 | DOI | MR | Zbl

[83] A. Strömbergsson, “On the limit distribution of Frobenius numbers”, Acta Arith., 152 (2012), 81–107 | DOI | MR | Zbl

[84] J. Marklof, “Limit theorems for theta sums”, Duke Math. J., 97:1 (1999), 127–153 | DOI | MR | Zbl

[85] F. Cellarosi, “Limiting curlicue measures for theta sums”, Ann. Inst. Henri Poincaré Probab. Statist., 47:2 (2011), 466–497 | DOI | MR | Zbl

[86] M. L. Kontsevich, Yu. M. Suhov, “Statistics of Klein polyhedra and multidimensional continued fractions”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Amer. Math. Soc., Providence, RI, 1999, 9–27 | MR | Zbl

[87] O. N. Karpenkov, “On an invariant Möbius measure and the Gauss–Kuzmin face distribution”, Proc. Steklov Inst. Math., 258 (2007), 74–86 | DOI | MR | Zbl

[88] F. Klein, “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwickelung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1895:3 (1895), 357–359 | Zbl

[89] F. Klein, “Sur une représentation géométrique du développement en fraction continue ordinaire”, Nouv. Ann. Math. (3), 15 (1896), 327–331 | Zbl

[90] H. J. S. Smith, The collected mathematical papers, v. 2, Clarendon Press, Oxford, 1894, vii+719 pp. | Zbl

[91] H. Minkowski, “Zur Theorie der Kettenbrüche”, Gesammelte Abhandlungen, v. 1, Druck und Verlag von B. G. Teubner, Leipzig, 1911, 278–292

[92] V. A. Bykovskii, “Local minima of lattices and vertices of Klein polyhedra”, Funct. Anal. Appl., 40:1 (2006), 56–57 | DOI | DOI | MR | Zbl

[93] O. N. German, “Klein polyhedra and relative minima of lattices”, Math. Notes, 79:4 (2006), 505–510 | DOI | DOI | MR | Zbl

[94] A. V. Ustinov, “Minimal vector systems in three-dimensional lattices and an analog of Vahlen's theorem for three-dimensional Minkowski continued fractions”, Proc. Steklov Inst. Math., 280, suppl. 2 (2013), S91–S116 | DOI | DOI | Zbl

[95] M. O. Avdeeva, V. A. Bykovskii, “An analogue of Vahlen's theorem for simultaneous approximations of a pair of numbers”, Sb. Math., 194:7 (2003), 955–967 | DOI | DOI | MR | Zbl

[96] V. A. Bykovskii, O. A. Gorkusha, “Minimal bases of three-dimensional complete lattices”, Sb. Math., 192:2 (2001), 215–223 | DOI | DOI | MR | Zbl

[97] Ph. Furtwängler, M. Zeisel, “Zur Minkowskischen Parallelepipedapproximation”, Monatsh. Math. Phys., 30:1 (1920), 177–198 | DOI | MR | Zbl

[98] P. M. Pepper, “Une application de la géométrie des nombres à une généralisation d'une fraction continue”, Ann. Sci. École Norm. Sup. (3), 56 (1939), 1–70 | MR | Zbl

[99] S. Felsner, F. Zickfeld, “Schnyder woods and orthogonal surfaces”, Discrete Comput. Geom., 40:1 (2008), 103–126 | DOI | MR | Zbl

[100] O. Karpenkov, A. Ustinov, “Geometry of Minkowski–Voronoi tessellations of the plane”, 2014, 30 pp., arXiv: 1407.0135

[101] H. Davenport, “On the product of three homogeneous linear forms. IV”, Proc. Cambridge Philos. Soc., 39:1 (1943), 1–21 | DOI | MR | Zbl

[102] H. P. F. Swinnerton-Dyer, “On the product of three homogeneous linear forms”, Acta Arith., 18 (1971), 371–385 | MR | Zbl

[103] J. W. S. Cassels, H. P. F. Swinnerton-Dyer, “On the product of three homogeneous linear forms and indefinite ternary quadratic forms”, Philos. Trans. Roy. Soc. London. Ser. A, 248:940 (1955), 73–96 | DOI | MR | Zbl

[104] J. W. S. Cassels, An introduction to the geometry of numbers, Classics Math., Corrected reprint of the 1971 ed., Springer-Verlag, Berlin, 1997, viii+344 pp. ; Dzh. V. Kassels, Vvedenie v geometriyu chisel, Mir, M., 1965, 421 pp. | MR | Zbl | MR | Zbl

[105] J. Buchmann, “A generalization of Voronoi's unit algorithm. I”, J. Number Theory, 20:2 (1985), 177–191 | DOI | MR | Zbl

[106] J. Buchmann, “A generalization of Voronoi's unit algorithm. II”, J. Number Theory, 20:2 (1985), 192–209 | DOI | MR | Zbl

[107] J. Buchmann, “The computation of the fundamental unit of totally complex quartic orders”, Math. Comp., 48:117 (1987), 39–54 | DOI | MR | Zbl

[108] J. Buchmann, “On the computation of units and class numbers by a generalization of Lagrange's algorithm”, J. Number Theory, 26:1 (1987), 8–30 | DOI | MR | Zbl

[109] T. W. Cusick, “Diophantine approximation of ternary linear forms”, Math. Comp., 25:113 (1971), 163–180 | DOI | MR | Zbl

[110] T. W. Cusick, “The two-dimensional Diophantine approximation constant. II”, Pacific J. Math., 105:1 (1983), 53–67 | DOI | MR | Zbl

[111] H. C. Williams, G. Cormack, E. Seah, “Calculation of the regulator of a pure cubic field”, Math. Comp., 34:150 (1980), 567–611 | DOI | MR | Zbl

[112] H. C. Williams, “Some results concerning Voronoi's continued fraction over $\mathcal Q(\sqrt[3]{D})$”, Math. Comp., 36:154 (1981), 631–652 | DOI | MR | Zbl

[113] V. A. Bykovskii, “Vahlen theorem for two-dimensional convergents”, Math. Notes, 66:1 (1999), 24–29 | DOI | DOI | MR | Zbl

[114] M. O. Avdeeva, V. A. Bykovskii, “Refinement of Vahlen's theorem for Minkowski bases of three-dimensional lattices”, Math. Notes, 79:2 (2006), 151–156 | DOI | DOI | MR | Zbl

[115] A. V. Ustinov, “On the three-dimensional Vahlen theorem”, Math. Notes, 95:1 (2014), 136–138 | DOI | MR | Zbl

[116] G. Ramharter, “On Mordell's inverse problem in dimension three”, J. Number Theory, 58:2 (1996), 388–415 | DOI | MR | Zbl

[117] V. A. Bykovskii, “O pogreshnosti teoretiko-chislovykh kvadraturnykh formul”, Chebyshevskii sb., 3:2(4) (2002), 27–33 | MR | Zbl

[118] V. A. Bykovskii, “On the error of number-theoretic quadrature formulas”, Dokl. Math., 67:2 (2003), 175–176 | MR | Zbl

[119] V. A. Bykovskii, “Algoritm vychisleniya lokalnykh minimumov reshetok”, Dokl. RAN, 399:5 (2004), 587–589 | MR

[120] V. A. Bykovskii, S. V. Gassan, “Algoritm vychisleniya lokalnykh minimumov tselochislennykh reshetok i ego prilozheniya”, Vestn. TOGU, 2011, no. 1(20), 39–48

[121] O. A. Gorkusha, N. M. Dobrovolskii, “Ob otsenkakh giperbolicheskoi dzeta-\allowbreakfunktsii reshetok”, Chebyshevskii sb., 6:2(14) (2005), 129–137 | MR | Zbl

[122] V. A. Bykovskii, “The discrepancy of the Korobov lattice points”, Izv. Math., 76:3 (2012), 446–465 | DOI | DOI | MR | Zbl

[123] O. Karpenkov, Geometry of continued fractions, Algorithms Comput. Math., 26, Springer, Heidelberg, 2013, xviii+405 pp. | DOI | MR | Zbl

[124] A. V. Ustinov, “On points of the modular hyperbola under the graph of a linear function”, Math. Notes, 97:2 (2015), 284–288 | DOI | DOI

[125] A. Weil, “On some exponential sums”, Proc. Natl. Acad. Sci. U.S.A., 34 (1948), 204–207 | DOI | MR | Zbl

[126] T. Estermann, “On Kloosterman's sum”, Mathematika, 8:1 (1961), 83–86 | DOI | MR | Zbl

[127] S. R. Finch, Mathematical constants, Encyclopedia Math. Appl., 94, Cambridge Univ. Press, Cambridge, 2003, xx+602 pp. | MR | Zbl