Self-excited relaxation oscillations in networks of impulse neurons
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 3, pp. 383-452
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper addresses the problem of mathematical modelling of neuron activity. New classes of singularly perturbed differential-difference equations with Volterra-type delay are proposed and used to describe how single neurons and also neural networks function with various kinds of connections (electrical or chemical). Special asymptotic methods are developed which make it possible to analyse questions of the existence and stability of relaxation periodic motions in such systems. Bibliography: 56 titles.
Keywords: neuron models, differential-difference equations, asymptotic behaviour, stability, buffering, bursting effect.
Mots-clés : relaxation oscillations
@article{RM_2015_70_3_a0,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Self-excited relaxation oscillations in networks of impulse neurons},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {383--452},
     year = {2015},
     volume = {70},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_3_a0/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Self-excited relaxation oscillations in networks of impulse neurons
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 383
EP  - 452
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_3_a0/
LA  - en
ID  - RM_2015_70_3_a0
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Self-excited relaxation oscillations in networks of impulse neurons
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 383-452
%V 70
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2015_70_3_a0/
%G en
%F RM_2015_70_3_a0
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Self-excited relaxation oscillations in networks of impulse neurons. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 3, pp. 383-452. http://geodesic.mathdoc.fr/item/RM_2015_70_3_a0/

[1] E. M. Izhikevich, Dynamical systems in neuroscience: the geometry of excitability and bursting, Comput. Neurosci., MIT Press, Cambridge, MA, 2007, xvi+441 pp. | MR

[2] A. L. Hodgkin, The conduction of the nervous impulse, Sherrington Lectures, 7, C. C. Thomas, Publisher, Springfield, IL, 1964, 108 pp.

[3] C. Koch, I. Segev, Methods in neuronal modeling. From ions to networks, Comput. Neurosci., 2nd ed., MIT Press, Cambridge, MA, 1998, 687 pp.

[4] A. L. Hodgkin, A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI

[5] A. L. Hodgkin, A. F. Huxley, “Action potentials recorded from inside a nerve fiber”, Nature, 144 (1939), 710–711 | DOI

[6] A. L. Hodgkin, “The local electric changes associated with repetitive action in a nonmedullated axon”, J. Physiol., 107:2 (1948), 165–181 | DOI

[7] D. Hansel, G. Mato, C. Meunier, “Synchrony in excitatory neural networks”, Neural Comp., 7:2 (1995), 307–337 | DOI

[8] E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Math. Concepts Methods Sci. Engrg., 13, Plenum Press, New York, 1980, x+228 pp. | DOI | MR | MR | Zbl | Zbl

[9] R. FitzHugh, “Mathematical models of threshold phenomena in the nerve membrane”, Bull. Math. Biophys., 17:4 (1955), 257–278 | DOI

[10] R. FitzHugh, “Threshold and plateaus in the Hodgkin–Huxley nerve equations”, J. Gen. Physiol., 43 (1960), 867–896 | DOI

[11] R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI

[12] J. Nagumo, S. Arimoto, S. Yoshizawa, “An active pulse transmission line simulating nerve axon”, Proc. IRE, 50:10 (1962), 2061–2070 | DOI

[13] C. Morris, H. Lecar, “Voltage oscillations in the barnacle giant muscle fiber”, Biophys. J., 35:1 (1981), 193–213 | DOI

[14] J. L. Hindmarsh, R. M. Rose, “A model of the nerve impulse using two first-order differential equations”, Nature, 296 (1982), 162–164 | DOI

[15] J. L. Hindmarsh, R. M. Rose, “A model of neuronal bursting using three coupled first order differential equations”, Proc. Roy. Soc. London Ser. B, 221 (1984), 87–102 | DOI

[16] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On a modification of the FitzHugh–Nagumo neuron model”, Comput. Math. Math. Phys., 54:3 (2014), 443–461 | DOI | DOI | MR | Zbl

[17] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Neklassicheskie relaksatsionnye kolebaniya v neirodinamike”, Model. i analiz inform. sistem, 21:2 (2014), 71–89

[18] E. M. Izhikevich, “Neural excitability, spiking and bursting”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:6 (2000), 1171–1266 | DOI | MR | Zbl

[19] M. I. Rabinovich, P. Varona, A. I. Selverston, H. D. I. Abarbanel, “Dynamical principles in neuroscience”, Rev. Modern Phys., 78:4 (2006), 1213–1265 | DOI

[20] T. R. Chay, J. Rinzel, “Bursting, beating, and chaos in an excitable membrane model”, Biophys. J., 47:3 (1985), 357–366 | DOI

[21] J. Rinzel, “A formal classification of bursting mechanisms in excitable systems”, Mathematical topics in population biology, morphogenesis and neurosciences (Kyoto, 1985), Lecture Notes in Biomath., 71, Springer, Berlin, 1987, 267–281 | DOI | MR | Zbl

[22] G. B. Ermentrout, N. Kopell, “Parabolic bursting in an excitable system coupled with a slow oscillation”, SIAM J. Appl. Math., 46:2 (1986), 233–253 | DOI | MR | Zbl

[23] Bursting. The genesis of rhythm in the nervous system, eds. S. Coombes, P. C. Bressloff, World Scientific, Hackensack, NJ, 2005, xvi+401 pp. | MR | Zbl

[24] E. M. Izhikevich, “Resonance and selective communication via bursts in neurons having subthreshold oscillations”, Biosystems, 67:1-3 (2002), 95–102 | DOI

[25] B. D. Hassard, N. D. Kazarinoff, Yieh Hei Wan, Theory and applications of Hopf bifurcation, London Math. Soc. Lecture Note Ser., 41, Cambridge Univ. Press, Cambridge–New York, 1981, v+311 pp. | MR | MR | Zbl | Zbl

[26] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, Monogr. Contemp. Math., Consultants Bureau, New York, 1994, xii+281 pp. | MR | MR | Zbl | Zbl

[27] J. J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons”, Proc. Nat. Acad. Sci. USA, 81:10 (1984), 3088–3092 | DOI

[28] S. Haykin, Neural networks. A comprehensive foundation, 2nd ed., Pearson Prentice Hall, Singapore, 1999, 842 pp. | Zbl

[29] C. M. Marcus, R. M. Westervelt, “Stability of analog neural networks with delay”, Phys. Rev. A (3), 39:1 (1989), 347–359 | DOI | MR

[30] J. Bélair, “Stability in a model of a delayed neural network”, J. Dynam. Differential Equations, 5:4 (1993), 607–623 | DOI | MR | Zbl

[31] J. Bélair, S. A. Campbell, P. van den Driessche, “Frustration, stability and delay-induced oscillations in a neural network model”, SIAM J. Appl. Math., 56:1 (1996), 245–255 | DOI | MR | Zbl

[32] K. Gopalsamy, I. Leung, “Delay induced periodicity in a neural netlet of excitation and inhibition”, Phys. D, 89:3-4 (1996), 395–426 | DOI | MR | Zbl

[33] Xiaoxin Liao, Yang Liao, “Stability of Hopfield-type neural networks. II”, Sci. China Ser. A, 40:8 (1997), 813–816 | DOI | MR | Zbl

[34] Hui Ye, A. N. Michel, Kaining Wang, “Qualitative analysis of Cohen–Grossberg neural networks with multiple delays”, Phys. Rev. E (3), 51:3, part B (1995), 2611–2618 | DOI | MR

[35] S. A. Campbell, Shigui Ruan, Junjie Wei, “Qualitative analysis of a neural network model with multiple time delays”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9:8 (1999), 1585–1595 | DOI | MR | Zbl

[36] P. van den Driessche, Jianhong Wu, Xingfu Zou, “Stabilization role of inhibitory self-connections in a delayed neural network”, Phys. D, 150:1-2 (2001), 84–90 | DOI | MR | Zbl

[37] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation self-oscillations in Hopfield networks with delay”, Izv. Math., 77:2 (2013), 271–312 | DOI | DOI | MR | Zbl

[38] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004, 408 pp.

[39] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005, 432 pp. | MR

[40] R. C. Elson, A. I. Selverston, R. Huerta, N. F. Rulkov, M. I. Rabinovich, H. D. I. Abarbanel, “Synchronous behavior of two coupled biological neurons”, Phys. Rev. Lett., 81:25 (1998), 5692–5695 | DOI

[41] T. J. Lewis, J. Rinzel, “Dynamics of spiking neurons connected by both inhibitory and electrical coupling”, J. Comput. Neurosci., 14:3 (2003), 283–309 | DOI

[42] N. Kopell, G. B. Ermentrout, “Symmetry and phaselocking in chains of weakly coupled oscillators”, Comm. Pure Appl. Math., 39:5 (1986), 623–660 | DOI | MR | Zbl

[43] D. Somers, N. Kopell, “Rapid synchronization through fast threshold modulation”, Biol. Cybernet., 68:5 (1993), 393–407 | DOI

[44] N. Kopell, D. Somers, “Anti-phase solutions in relaxation oscillators coupled through excitatory interactions”, J. Math. Biol., 33:3 (1995), 261–280 | DOI | MR | Zbl

[45] D. Terman, “An introduction to dynamical systems and neuronal dynamics”, Tutorials in mathematical biosciences. I. Mathematical neuroscience, Lecture Notes in Math., 1860, Springer-Verlag, Berlin, 2005, 21–68 | DOI | MR | Zbl

[46] S. A. Kaschenko, V. V. Maiorov, Modeli volnovoi pamyati, Knizhnyi dom «LIBROKOM», M., 2009, 288 pp.

[47] G. E. Hutchinson, “Circular causal systems in ecology”, Ann. New York Acad. Sci., 50, no. 4, New York Acad. Sci., New York, NY, 1948, 221–246 | DOI

[48] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Relay with delay and its $C^1$-approximation”, Proc. Steklov Inst. Math., 216 (1997), 119–146 | MR | Zbl

[49] A. Yu. Kolesov, N. Kh. Rozov, “Self-excited wave processes in chains of diffusion-linked delay equations”, Russian Math. Surveys, 67:2 (2012), 297–343 | DOI | DOI | MR | Zbl

[50] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On a method for mathematical modeling of chemical synapses”, Differ. Equ., 49:10 (2013), 1193–1210 | DOI | MR | Zbl

[51] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Modeling the bursting effect in neuron systems”, Math. Notes, 93:5 (2013), 676–690 | DOI | DOI | MR | Zbl

[52] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “New methods for proving the existence and stability of periodic solutions in singularly perturbed delay systems”, Proc. Steklov Inst. Math., 259 (2007), 101–127 | DOI | MR | Zbl

[53] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Extremal dynamics of the generalized Hutchinson equation”, Comput. Math. Math. Phys., 49:1 (2009), 71–83 | DOI | MR | Zbl

[54] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Asymptotic methods of investigation of periodic solutions of nonlinear hyperbolic equations”, Proc. Steklov Inst. Math., 222 (1998), 1–189 | MR | Zbl

[55] T. Kohonen, Associative memory. A system-theoretical approach, Communication and Cybernetics, 17, Springer-Verlag, Berlin–New York, 1977, ix+176 pp. | DOI | MR | MR | Zbl | Zbl

[56] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Discrete autowaves in neural systems”, Comput. Math. Math. Phys., 52:5 (2012), 702–719 | DOI | MR | Zbl