Mots-clés : relaxation oscillations
@article{RM_2015_70_3_a0,
author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
title = {Self-excited relaxation oscillations in networks of impulse neurons},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {383--452},
year = {2015},
volume = {70},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_3_a0/}
}
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - Self-excited relaxation oscillations in networks of impulse neurons JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2015 SP - 383 EP - 452 VL - 70 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2015_70_3_a0/ LA - en ID - RM_2015_70_3_a0 ER -
%0 Journal Article %A S. D. Glyzin %A A. Yu. Kolesov %A N. Kh. Rozov %T Self-excited relaxation oscillations in networks of impulse neurons %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2015 %P 383-452 %V 70 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2015_70_3_a0/ %G en %F RM_2015_70_3_a0
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Self-excited relaxation oscillations in networks of impulse neurons. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 3, pp. 383-452. http://geodesic.mathdoc.fr/item/RM_2015_70_3_a0/
[1] E. M. Izhikevich, Dynamical systems in neuroscience: the geometry of excitability and bursting, Comput. Neurosci., MIT Press, Cambridge, MA, 2007, xvi+441 pp. | MR
[2] A. L. Hodgkin, The conduction of the nervous impulse, Sherrington Lectures, 7, C. C. Thomas, Publisher, Springfield, IL, 1964, 108 pp.
[3] C. Koch, I. Segev, Methods in neuronal modeling. From ions to networks, Comput. Neurosci., 2nd ed., MIT Press, Cambridge, MA, 1998, 687 pp.
[4] A. L. Hodgkin, A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI
[5] A. L. Hodgkin, A. F. Huxley, “Action potentials recorded from inside a nerve fiber”, Nature, 144 (1939), 710–711 | DOI
[6] A. L. Hodgkin, “The local electric changes associated with repetitive action in a nonmedullated axon”, J. Physiol., 107:2 (1948), 165–181 | DOI
[7] D. Hansel, G. Mato, C. Meunier, “Synchrony in excitatory neural networks”, Neural Comp., 7:2 (1995), 307–337 | DOI
[8] E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Math. Concepts Methods Sci. Engrg., 13, Plenum Press, New York, 1980, x+228 pp. | DOI | MR | MR | Zbl | Zbl
[9] R. FitzHugh, “Mathematical models of threshold phenomena in the nerve membrane”, Bull. Math. Biophys., 17:4 (1955), 257–278 | DOI
[10] R. FitzHugh, “Threshold and plateaus in the Hodgkin–Huxley nerve equations”, J. Gen. Physiol., 43 (1960), 867–896 | DOI
[11] R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI
[12] J. Nagumo, S. Arimoto, S. Yoshizawa, “An active pulse transmission line simulating nerve axon”, Proc. IRE, 50:10 (1962), 2061–2070 | DOI
[13] C. Morris, H. Lecar, “Voltage oscillations in the barnacle giant muscle fiber”, Biophys. J., 35:1 (1981), 193–213 | DOI
[14] J. L. Hindmarsh, R. M. Rose, “A model of the nerve impulse using two first-order differential equations”, Nature, 296 (1982), 162–164 | DOI
[15] J. L. Hindmarsh, R. M. Rose, “A model of neuronal bursting using three coupled first order differential equations”, Proc. Roy. Soc. London Ser. B, 221 (1984), 87–102 | DOI
[16] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On a modification of the FitzHugh–Nagumo neuron model”, Comput. Math. Math. Phys., 54:3 (2014), 443–461 | DOI | DOI | MR | Zbl
[17] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Neklassicheskie relaksatsionnye kolebaniya v neirodinamike”, Model. i analiz inform. sistem, 21:2 (2014), 71–89
[18] E. M. Izhikevich, “Neural excitability, spiking and bursting”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:6 (2000), 1171–1266 | DOI | MR | Zbl
[19] M. I. Rabinovich, P. Varona, A. I. Selverston, H. D. I. Abarbanel, “Dynamical principles in neuroscience”, Rev. Modern Phys., 78:4 (2006), 1213–1265 | DOI
[20] T. R. Chay, J. Rinzel, “Bursting, beating, and chaos in an excitable membrane model”, Biophys. J., 47:3 (1985), 357–366 | DOI
[21] J. Rinzel, “A formal classification of bursting mechanisms in excitable systems”, Mathematical topics in population biology, morphogenesis and neurosciences (Kyoto, 1985), Lecture Notes in Biomath., 71, Springer, Berlin, 1987, 267–281 | DOI | MR | Zbl
[22] G. B. Ermentrout, N. Kopell, “Parabolic bursting in an excitable system coupled with a slow oscillation”, SIAM J. Appl. Math., 46:2 (1986), 233–253 | DOI | MR | Zbl
[23] Bursting. The genesis of rhythm in the nervous system, eds. S. Coombes, P. C. Bressloff, World Scientific, Hackensack, NJ, 2005, xvi+401 pp. | MR | Zbl
[24] E. M. Izhikevich, “Resonance and selective communication via bursts in neurons having subthreshold oscillations”, Biosystems, 67:1-3 (2002), 95–102 | DOI
[25] B. D. Hassard, N. D. Kazarinoff, Yieh Hei Wan, Theory and applications of Hopf bifurcation, London Math. Soc. Lecture Note Ser., 41, Cambridge Univ. Press, Cambridge–New York, 1981, v+311 pp. | MR | MR | Zbl | Zbl
[26] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, Monogr. Contemp. Math., Consultants Bureau, New York, 1994, xii+281 pp. | MR | MR | Zbl | Zbl
[27] J. J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons”, Proc. Nat. Acad. Sci. USA, 81:10 (1984), 3088–3092 | DOI
[28] S. Haykin, Neural networks. A comprehensive foundation, 2nd ed., Pearson Prentice Hall, Singapore, 1999, 842 pp. | Zbl
[29] C. M. Marcus, R. M. Westervelt, “Stability of analog neural networks with delay”, Phys. Rev. A (3), 39:1 (1989), 347–359 | DOI | MR
[30] J. Bélair, “Stability in a model of a delayed neural network”, J. Dynam. Differential Equations, 5:4 (1993), 607–623 | DOI | MR | Zbl
[31] J. Bélair, S. A. Campbell, P. van den Driessche, “Frustration, stability and delay-induced oscillations in a neural network model”, SIAM J. Appl. Math., 56:1 (1996), 245–255 | DOI | MR | Zbl
[32] K. Gopalsamy, I. Leung, “Delay induced periodicity in a neural netlet of excitation and inhibition”, Phys. D, 89:3-4 (1996), 395–426 | DOI | MR | Zbl
[33] Xiaoxin Liao, Yang Liao, “Stability of Hopfield-type neural networks. II”, Sci. China Ser. A, 40:8 (1997), 813–816 | DOI | MR | Zbl
[34] Hui Ye, A. N. Michel, Kaining Wang, “Qualitative analysis of Cohen–Grossberg neural networks with multiple delays”, Phys. Rev. E (3), 51:3, part B (1995), 2611–2618 | DOI | MR
[35] S. A. Campbell, Shigui Ruan, Junjie Wei, “Qualitative analysis of a neural network model with multiple time delays”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9:8 (1999), 1585–1595 | DOI | MR | Zbl
[36] P. van den Driessche, Jianhong Wu, Xingfu Zou, “Stabilization role of inhibitory self-connections in a delayed neural network”, Phys. D, 150:1-2 (2001), 84–90 | DOI | MR | Zbl
[37] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation self-oscillations in Hopfield networks with delay”, Izv. Math., 77:2 (2013), 271–312 | DOI | DOI | MR | Zbl
[38] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004, 408 pp.
[39] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005, 432 pp. | MR
[40] R. C. Elson, A. I. Selverston, R. Huerta, N. F. Rulkov, M. I. Rabinovich, H. D. I. Abarbanel, “Synchronous behavior of two coupled biological neurons”, Phys. Rev. Lett., 81:25 (1998), 5692–5695 | DOI
[41] T. J. Lewis, J. Rinzel, “Dynamics of spiking neurons connected by both inhibitory and electrical coupling”, J. Comput. Neurosci., 14:3 (2003), 283–309 | DOI
[42] N. Kopell, G. B. Ermentrout, “Symmetry and phaselocking in chains of weakly coupled oscillators”, Comm. Pure Appl. Math., 39:5 (1986), 623–660 | DOI | MR | Zbl
[43] D. Somers, N. Kopell, “Rapid synchronization through fast threshold modulation”, Biol. Cybernet., 68:5 (1993), 393–407 | DOI
[44] N. Kopell, D. Somers, “Anti-phase solutions in relaxation oscillators coupled through excitatory interactions”, J. Math. Biol., 33:3 (1995), 261–280 | DOI | MR | Zbl
[45] D. Terman, “An introduction to dynamical systems and neuronal dynamics”, Tutorials in mathematical biosciences. I. Mathematical neuroscience, Lecture Notes in Math., 1860, Springer-Verlag, Berlin, 2005, 21–68 | DOI | MR | Zbl
[46] S. A. Kaschenko, V. V. Maiorov, Modeli volnovoi pamyati, Knizhnyi dom «LIBROKOM», M., 2009, 288 pp.
[47] G. E. Hutchinson, “Circular causal systems in ecology”, Ann. New York Acad. Sci., 50, no. 4, New York Acad. Sci., New York, NY, 1948, 221–246 | DOI
[48] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Relay with delay and its $C^1$-approximation”, Proc. Steklov Inst. Math., 216 (1997), 119–146 | MR | Zbl
[49] A. Yu. Kolesov, N. Kh. Rozov, “Self-excited wave processes in chains of diffusion-linked delay equations”, Russian Math. Surveys, 67:2 (2012), 297–343 | DOI | DOI | MR | Zbl
[50] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On a method for mathematical modeling of chemical synapses”, Differ. Equ., 49:10 (2013), 1193–1210 | DOI | MR | Zbl
[51] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Modeling the bursting effect in neuron systems”, Math. Notes, 93:5 (2013), 676–690 | DOI | DOI | MR | Zbl
[52] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “New methods for proving the existence and stability of periodic solutions in singularly perturbed delay systems”, Proc. Steklov Inst. Math., 259 (2007), 101–127 | DOI | MR | Zbl
[53] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Extremal dynamics of the generalized Hutchinson equation”, Comput. Math. Math. Phys., 49:1 (2009), 71–83 | DOI | MR | Zbl
[54] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Asymptotic methods of investigation of periodic solutions of nonlinear hyperbolic equations”, Proc. Steklov Inst. Math., 222 (1998), 1–189 | MR | Zbl
[55] T. Kohonen, Associative memory. A system-theoretical approach, Communication and Cybernetics, 17, Springer-Verlag, Berlin–New York, 1977, ix+176 pp. | DOI | MR | MR | Zbl | Zbl
[56] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Discrete autowaves in neural systems”, Comput. Math. Math. Phys., 52:5 (2012), 702–719 | DOI | MR | Zbl