Gaussian optimizers and the additivity problem in quantum information theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 2, pp. 331-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper surveys two remarkable analytical problems of quantum information theory. The main part is a detailed report on the recent (partial) solution of the quantum Gaussian optimizer problem which establishes an optimal property of Glauber's coherent states — a particular case of pure quantum Gaussian states. The notion of a quantum Gaussian channel is developed as a non-commutative generalization of an integral operator with Gaussian kernel, and it is shown that the coherent states, and under certain conditions only they, minimize a broad class of concave functionals of the output of a Gaussian channel. Thus, the output states corresponding to a Gaussian input are the ‘least chaotic’, majorizing all the other outputs. The solution, however, is essentially restricted to the gauge-invariant case where a distinguished complex structure plays a special role. Also discussed is the related well-known additivity conjecture, which was solved in principle in the negative some five years ago. This refers to the additivity or multiplicativity (with respect to tensor products of channels) of information quantities related to the classical capacity of a quantum channel, such as the $(1\to p)$-norms or the minimal von Neumann or Rényi output entropies. A remarkable corollary of the present solution of the quantum Gaussian optimizer problem is that these additivity properties, while not valid in general, do hold in the important and interesting class of gauge-covariant Gaussian channels. Bibliography: 65 titles.
Keywords: completely positive map, canonical commutation relations, Gaussian state, coherent state, quantum Gaussian channel, gauge covariance, von Neumann entropy, channel capacity, majorization.
@article{RM_2015_70_2_a3,
     author = {A. S. Holevo},
     title = {Gaussian optimizers and the additivity problem in quantum information theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {331--367},
     year = {2015},
     volume = {70},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_2_a3/}
}
TY  - JOUR
AU  - A. S. Holevo
TI  - Gaussian optimizers and the additivity problem in quantum information theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 331
EP  - 367
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_2_a3/
LA  - en
ID  - RM_2015_70_2_a3
ER  - 
%0 Journal Article
%A A. S. Holevo
%T Gaussian optimizers and the additivity problem in quantum information theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 331-367
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2015_70_2_a3/
%G en
%F RM_2015_70_2_a3
A. S. Holevo. Gaussian optimizers and the additivity problem in quantum information theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 2, pp. 331-367. http://geodesic.mathdoc.fr/item/RM_2015_70_2_a3/

[1] G. G. Amosov, A. S. Holevo, R. F. Werner, “On the additivity conjecture in quantum information theory”, Problems Inform. Transmission, 36:4 (2000), 305–313 | MR | Zbl

[2] Arvind, B. Dutta, N. Mukunda, R. Simon, “The real symplectic groups in quantum mechanics and optics”, Pramana, 45:6 (1995), 471–497 | DOI

[3] G. Aubrun, S. Szarek, E. Werner, “Hastings's additivity counterexample via Dvoretzky's theorem”, Comm. Math. Phys., 305:1 (2011), 85–97 | DOI | MR | Zbl

[4] K. M. R. Audenaert, “A note on the $p\to q$ norms of completely positive maps”, Linear Algebra Appl., 430:4 (2009), 1436–1440 | DOI | MR | Zbl

[5] K. I. Babenko, “An inequality in the theory of Fourier integrals”, Amer. Math. Soc. Transl. Ser. 2, 44, Amer. Math. Soc., Providence, RI, 1965, 115–128 | MR | Zbl | Zbl

[6] W. Beckner, “Inequalities in Fourier analysis”, Ann. of Math. (2), 102:1 (1975), 159–182 | DOI | MR | Zbl

[7] S. T. Belinschi, B. Collins, I. Nechita, Almost one bit violation for the additivity of the minimum output entropy, 2013 (v3 – 2014), 24 pp., arXiv: 1305.1567

[8] C. H. Bennett, C. A. Fuchs, J. A. Smolin, “Entanglement-enhanced classical communication on a noisy quantum channel”, Quantum communication, computing, and measurement, eds. O. Hirota, A. S. Holevo, C. M. Caves, Plenum, New York, 1997, 79–88 | DOI | Zbl

[9] F. A. Berezin, “Covariant and contravariant symbols of operators”, Math. USSR-Izv., 6:5 (1972), 1117–1151 | DOI | MR | Zbl

[10] F. G. S. L. Brandão, M. Horodecki, “On Hastings' counterexamples to the minimum output entropy additivity conjecture”, Open Syst. Inf. Dyn., 17:1 (2010), 31–52 | DOI | MR | Zbl

[11] E. Carlen, “Trace inequalities and quantum entropy: an introductory course”, Entropy and the quantum, Contemp. Math., 529, Amer. Math. Soc., Providence, RI, 2010, 73–140 | DOI | MR | Zbl

[12] E. A. Carlen, E. H. Lieb, “A Minkowski type trace inequality and strong subadditivity of quantum entropy”, Differential operators and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 189, Amer. Math. Soc., Providence, RI, 1999, 59–68 | MR | Zbl

[13] F. Caruso, V. Giovannetti, A. S. Holevo, “One-mode bosonic Gaussian channels: a full weak-degradability classification”, New J. Phys., 8 (2006), 310, 18 pp. | DOI

[14] F. Caruso, J. Eisert, V. Giovannetti, A. S. Holevo, “Multi-mode bosonic Gaussian channels”, New J. Phys., 10 (2008), 083030, 33 pp. | DOI

[15] T. M. Cover, J. A. Thomas, Elements of information theory, Wiley Ser. Telecom., John Wiley Sons, Inc., New York, 1991, xxiv+542 pp. | DOI | MR | Zbl

[16] E. B. Davies, Quantum theory of open systems, Academic Press, London–New York, 1976, x+171 pp. | MR | Zbl

[17] B. Demoen, P. Vanheuverzwijn, A. Verbeure, “Completely positive quasi-free maps on the CCR-algebra”, Rep. Math. Phys., 15:1 (1979), 27–39 | DOI | MR | Zbl

[18] M. Fukuda, C. King, D. K. Moser, “Comments on Hastings' additivity counterexamples”, Comm. Math. Phys., 296:1 (2010), 111–143 | DOI | MR | Zbl

[19] M. Fukuda, M. M. Wolf, “Simplifying additivity problems using direct sum constructions”, J. Math. Phys., 48:7 (2007), 072101, 7 pp. | DOI | MR | Zbl

[20] R. García-Patrón, C. Navarrete-Benlloch, S. Lloyd, J. H. Shapiro, N. J. Cerf, “Majorization theory approach to the Gaussian channel minimum entropy conjecture”, Phys. Rev. Lett., 108:11 (2012), 110505, 5 pp. | DOI

[21] V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. H. Shapiro, H. P. Yuen, “Classical capacity of the lossy bosonic channel: the exact solution”, Phys. Rev. Lett., 92:2 (2004), 027902, 4 pp. | DOI

[22] V. Giovannetti, A. S. Holevo, R. Garcia-Patron, “A solution of Gaussian optimizer conjecture for quantum channels”, Comm. Math. Phys., 334:3 (2015), 1553–1571 | DOI

[23] V. Giovannetti, A. S. Holevo, A. Mari, Theoret. and Math. Phys., 182:2 (2015), 284–293 | DOI | DOI

[24] V. Giovannetti, S. Lloyd, “Additivity properties of a Gaussian channel”, Phys. Rev. A, 69:6 (2004), 062307, 9 pp. | DOI | MR | Zbl

[25] A. Grudka, M. Horodecki, Ł. Pankowski, Constructive counterexamples to additivity of minimum output Rényi entropy of quantum channels for all $p>2$, 2009 (v2 – 2010), 4 pp., arXiv: 0911.2515

[26] M. B. Hastings, “Superadditivity of communication capacity using entangled inputs”, Nature Physics, 5:4 (2009), 255–257 | DOI

[27] M. Hayashi, H. Imai, K. Matsumoto, M.-B. Ruskai, T. Shimono, “Qubit channels which require four inputs to achieve capacity: implications for additivity conjectures”, Quantum Inf. Comput., 5:1 (2005), 13–31 | MR | Zbl

[28] P. Hayden, The maximal $p$-norm multiplicativity conjecture is false, 2007, 12 pp., arXiv: 0707.3291

[29] P. Hayden, A. Winter, “Counterexamples to the maximal $p$-norm multiplicativity conjecture for all $p > 1$”, Comm. Math. Phys., 284:1 (2008), 263–280 | DOI | MR | Zbl

[30] T. Heinosaari, A. S. Holevo, M. M. Wolf, “The semigroup structure of Gaussian channels”, Quantum Inf. Comput., 10:7-8 (2010), 619–635 | MR | Zbl

[31] T. Hiroshima, “Additivity and multiplicativity properties of some Gaussian channels for Gaussian inputs”, Phys. Rev. A, 73:1 (2006), 012330, 9 pp. | DOI

[32] A. S. Holevo, “The capacity of the quantum channel with general signal states”, IEEE Trans. Inform. Theory, 44:1 (1998), 269–273 | DOI | MR | Zbl

[33] A. S. Holevo, Probabilistic and statistical aspects of quantum theory, Quaderni. Monographs, 1, 2nd ed., Edizioni della Normale, Pisa, 2011, xvi+323 pp. | DOI | MR | Zbl

[34] A. S. Holevo, Statistical structure of quantum theory, Lect. Notes Phys. Monogr., 67, Springer-Verlag, Berlin, 2001, x+159 pp. | DOI | MR | Zbl

[35] A. S. Holevo, “Entanglement-assisted capacities of constrained quantum channels”, Theory Probab. Appl., 48:2 (2004), 243–255 | DOI | DOI | MR | Zbl

[36] A. S. Holevo, “Complementary channels and the additivity problem”, Theory Probab. Appl., 51:1 (2007), 92–100 | DOI | DOI | MR | Zbl

[37] A. S. Holevo, “Multiplicativity of $p$-norms of completely positive maps and the additivity problem in quantum information theory”, Russian Math. Surveys, 61:2 (2006), 301–339 | DOI | DOI | MR | Zbl

[38] A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, de Gruyter Stud. Math. Phys., 16, de Gruyter, Berlin, 2012, xiv+349 pp. | MR | Zbl

[39] A. S. Holevo, “Extreme bosonic linear channels”, Theoret. and Math. Phys., 174:2 (2013), 288–297 | DOI | DOI | MR | Zbl

[40] A. S. Holevo, M. Sohma, O. Hirota, “Capacity of quantum Gaussian channels”, Phys. Rev. A, 59:3 (1999), 1820–1828 | DOI

[41] A. S. Holevo, M. Sohma, O. Hirota, “Error exponents for quantum channels with constrained inputs”, Rep. Math. Phys., 46:3 (2000), 343–358 | DOI | MR | Zbl

[42] A. S. Holevo, R. F. Werner, “Evaluating capacities of bosonic Gaussian channels”, Phys. Rev. A, 63:3 (2001), 032312, 14 pp. | DOI

[43] M. Horodecki, P. W. Shor, M. B. Ruskai, “Entanglement breaking channels”, Rev. Math. Phys., 15:6 (2003), 629–641 | DOI | MR | Zbl

[44] C. King, “Maximal $p$-norms of entanglement breaking channels”, Quantum Inf. Comput., 3:2 (2003), 186–190 ; (2002), 7 pp., arXiv: quant-ph/0212057 | MR | Zbl

[45] C. King, “Additivity for unital qubit channels”, J. Math. Phys., 43:10 (2002), 4641–4653 | DOI | MR | Zbl

[46] C. King, “The capacity of the quantum depolarizing channel”, IEEE Trans. Inform. Theory, 49:1 (2003), 221–229 | DOI | MR | Zbl

[47] C. King, K. Matsumoto, M. Nathanson, M. B. Ruskai, “Properties of conjugate channels with applications to additivity and multiplicativity”, Markov Process. Related Fields, 13:2 (2007), 391–423 | MR | Zbl

[48] J. R. Klauder, E. C. G. Sudarshan, Fundamentals of quantum optics, W. A. Benjamin, Inc., New York–Amsterdam, 1968, xi+279 pp. | MR

[49] A. I. Kostrikin, Yu. I. Manin, Linear algebra and geometry, Algebra, 1, Gordon and Breach Science Publishers, New York, 1989, x+309 pp. | MR | MR | Zbl | Zbl

[50] E. H. Lieb, “Proof of an entropy conjecture of Wehrl”, Comm. Math. Phys., 62:1 (1978), 35–41 | DOI | MR | Zbl

[51] E. H. Lieb, “Gaussian kernels have only Gaussian maximizers”, Invent. Math., 102:1 (1990), 179–208 | DOI | MR | Zbl

[52] E. H. Lieb, J. P. Solovej, “Proof of an entropy conjecture for Bloch coherent spin states and its generalizations”, Acta Math., 212:2 (2014), 379–398 | DOI | MR | Zbl

[53] A. Mari, V. Giovannetti, A. S. Holevo, “Quantum state majorization at the output of bosonic Gaussian channels”, Nature Communications, 5 (2014), 3826 | DOI

[54] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2002, xii+300 pp. | MR | Zbl

[55] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York–London, 1972, xvii+325 pp. | MR | MR | Zbl

[56] A. Serafini, J. Eisert, M. M. Wolf, “Multiplicativity of maximal output purities of Gaussian channels under Gaussian inputs”, Phys. Rev. A, 71:1 (2005), 012320, 9 pp. | DOI

[57] M. E. Shirokov, “Superadditivity of the convex closure of the output entropy of a quantum channel”, Russian Math. Surveys, 61:6 (2006), 1186–1188 | DOI | DOI | MR | Zbl

[58] M. E. Shirokov, “On properties of quantum channels related to their classical capacity”, Theory Probab. Appl., 52:2 (2008), 250–276 | DOI | DOI | MR | Zbl

[59] P. W. Shor, “Additivity of the classical capacity of entanglement-breaking quantum channels”, J. Math. Phys., 43:9 (2002), 4334–4340 | DOI | MR | Zbl

[60] P. W. Shor, “Equivalence of additivity questions in quantum information theory”, Comm. Math. Phys., 246:3 (2004), 453–472 | DOI | MR | Zbl

[61] W. F. Stinespring, “Positive functions on $C^*$-algebras”, Proc. Amer. Math. Soc., 6:2 (1955), 211–216 | DOI | MR | Zbl

[62] K. Temme, F. Pastawski, M. J. Kastoryano, “Hypercontractivity of quasi-free quantum semigroups”, J. Phys. A, 47:40 (2014), 405303, 27 pp. | DOI | MR | Zbl

[63] A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR

[64] R. F. Werner, A. S. Holevo, “Counterexample to an additivity conjecture for output purity of quantum channels”, J. Math. Phys., 43:9 (2002), 4353–4357 | DOI | MR | Zbl

[65] A. Winter, “The maximum output $p$-norm of quantum channels is not multiplicative for any $p>2$”, 2007 (v3 – 2008), 4 pp., arXiv: 0707.0402