On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 2, pp. 299-329 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The complete manifold of ground-state eigenfunctions for the purely magnetic two-dimensional Pauli operator is considered as a byproduct of a new reduction (found by the authors several years ago) for the algebro-geometric inverse spectral data (that is, Riemann surfaces and divisors). This reduction is associated with a $({2+1})$-soliton hierarchy containing a 2D analogue of the famous ‘Burgers system’. This paper also surveys previous papers since 1980, including the first topological ideas in the space of quasi-momenta, and presents new results on self-adjoint boundary-value problems for the Pauli operator. The ‘non-spectral’ Bloch–Floquet functions of zero 2D level give discrete points of additional spectrum analogous to the ‘boundary states’ of finite-gap 1D potentials in the gaps. Bibliography: 35 titles.
Keywords: magnetic Pauli operator, algebro-geometric solutions, ground state, Landau levels, boundary-value problems.
@article{RM_2015_70_2_a2,
     author = {P. G. Grinevich and A. E. Mironov and S. P. Novikov},
     title = {On the non-relativistic two-dimensional purely magnetic supersymmetric {Pauli} operator},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {299--329},
     year = {2015},
     volume = {70},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_2_a2/}
}
TY  - JOUR
AU  - P. G. Grinevich
AU  - A. E. Mironov
AU  - S. P. Novikov
TI  - On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 299
EP  - 329
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_2_a2/
LA  - en
ID  - RM_2015_70_2_a2
ER  - 
%0 Journal Article
%A P. G. Grinevich
%A A. E. Mironov
%A S. P. Novikov
%T On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 299-329
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2015_70_2_a2/
%G en
%F RM_2015_70_2_a2
P. G. Grinevich; A. E. Mironov; S. P. Novikov. On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 2, pp. 299-329. http://geodesic.mathdoc.fr/item/RM_2015_70_2_a2/

[1] V. B. Berestetskii, E. M. Lifshitz, L. P. Pitaevskii, Course of theoretical physics, v. 4, Quantum electrodynamics, 2nd ed., Butterworth–Heinemann, 1982, 652 pp. | MR | Zbl

[2] P. G. Grinevich, A. E. Mironov, S. P. Novikov, “2D-Schrödinger operator, ${(2+1)}$ evolution systems and new reductions, 2D-Burgers hierarchy and inverse problem data”, Russian Math. Surveys, 65:3 (2010), 580–582 | DOI | DOI | MR | Zbl

[3] P. G. Grinevich, A. E. Mironov, S. P. Novikov, “Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for SPIN-$1/2$ particles”, Theoret. and Math. Phys., 164:3 (2010), 1110–1127 | DOI | DOI | Zbl

[4] P. G. Grinevich, A. E. Mironov, S. P. Novikov, “Erratum to: `Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for SPIN-$1/2$ particles' ”, Theoret. and Math. Phys., 166:2 (2011), 278 | DOI | DOI | Zbl

[5] P. G. Grinevich, A. E. Mironov, S. P. Novikov, On the nonrelativistic 2D purely magnetic supersymmetric Pauli operator, 2011 (v3 – 2015), 39 pp., arXiv: 1101.5678

[6] P. G. Grinevich, A. E. Mironov, S. P. Novikov, “Two-dimensional Pauli operator in a magnetic field”, Low Temp. Phys., 37:10 (2011), 829–833 | DOI

[7] J. E. Avron, R. Seiler, “Paramagnetism for nonrelativistic electrons and Euclidean massless Dirac particles”, Phys. Rev. Lett., 42:15 (1979), 931–934 | DOI

[8] Y. Aharonov, A. Casher, “Ground state of a spin-$1/2$ charged particle in a two-dimensional magnetic field”, Phys. Rev. A, 19:6 (1979), 2461–2462 | DOI | MR

[9] B. A. Dubrovin, S. P. Novikov, “Ground states of a two-dimensional electron in a periodic magnetic field”, Soviet Phys. JETP, 52:3 (1980), 511–516 | MR

[10] B. A. Dubrovin, S. P. Novikov, “Ground states in a periodic field. Magnetic Bloch functions and vector bundles”, Soviet Math. Dokl., 22 (1980), 240–244 | MR | Zbl

[11] S. P. Novikov, “Magnetic Bloch functions and vector bundles. Typical dispersion laws and their quantum numbers”, Soviet Math. Dokl., 23:2 (1981), 298–303 | MR | Zbl

[12] A. S. Lyskova, “On the Schrödinger operator in a magnetic field”, Russian Math. Surveys, 36:2 (1981), 181–182 | DOI | MR

[13] A. S. Lyskova, “Topological properties of the Schrödinger operator in a magnetic field and with a weak potential”, Russian Math. Surveys, 36:5 (1981), 165–166 | DOI | MR

[14] S. P. Novikov, “Two-dimensional Schrödinger operators in periodic fields”, J. Soviet Math., 28:1 (1985), 1–20 | DOI | MR | Zbl

[15] D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, “Quantized Hall conductance in a two-dimensional periodic potential”, Phys. Rev. Lett., 49:6 (1982), 405–408 | DOI

[16] R. Tao, D. J. Thouless, “Fractional quantization of Hall conductance”, Phys. Rev. B, 28:2 (1983), 1142–1144 | DOI

[17] L. E. Gendenshtein, “Supersymmetry in the problem of an electron in a nonuniform magnetic field”, JETP Lett., 39 (1984), 280–282

[18] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. II, Gauthier-Villars, Paris, 1915, xix+567 pp. | MR | Zbl

[19] S. P. Novikov, A. P. Veselov, “Exactly solvable 2-dimensional Schrödinger operators and Laplace transformations”, Solitons, geometry and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 109–132 | MR | Zbl

[20] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 | DOI | MR | Zbl

[21] N. J. Hitchin, “Harmonic maps from a 2-torus to the 3-sphere”, J. Differential Geom., 31:3 (1990), 627–710 | MR | Zbl

[22] A. I. Bobenko, “Constant mean curvature surfaces and integrable equations”, Russian Math. Surveys, 46:4 (1991), 1–45 | DOI | MR | Zbl

[23] S. V. Manakov, “Metod obratnoi zadachi rasseyaniya i dvumernye evolyutsionnye uravneniya”, UMN, 31:5(191) (1976), 245–246 | MR | Zbl

[24] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces”, Soviet Math. Dokl., 17:4 (1976), 947–951 | MR | Zbl

[25] I. V. Cherednik, “Reality conditions in ‘finite-zone integration’”, Soviet Phys. Dokl., 25:6 (1980), 450–452 | MR | Zbl

[26] A. P. Veselov, S. P. Novikov, “Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations”, Soviet Math. Dokl., 30:3 (1984), 588–591 | MR | Zbl

[27] A. P. Veselov, S. P. Novikov, “Finite-zone, two-dimensional Schrödinger operators. Potential operators”, Soviet Math. Dokl., 30:3 (1984), 705–708 | MR | Zbl

[28] A. P. Veselov, I. M. Krichever, S. P. Novikov, “Two-dimensional periodic Schrödinger operators and Prym's $\theta$-functions”, Geometry today (Rome, 1984), Progr. Math., 60, Birkhäuser Boston, Boston, MA, 1985, 283–301 | MR | Zbl

[29] S. P. Novikov, A. P. Veselov, “Two-dimensional Schrödinger operator: inverse scattering transform and evolutional equations”, Phys. D, 18:1-3 (1986), 267–273 | DOI | MR | Zbl

[30] P. G. Grinevich, S. V. Manakov, “Inverse scattering problem for the two-dimensional Schrödinger operator, the $\overline{\partial}$-method and nonlinear equations”, Funct. Anal. Appl., 20:2 (1986), 94–103 | DOI | MR | Zbl

[31] P. G. Grinevich, R. G. Novikov, “Analogs of multisoliton potentials for the two-dimensional Schrödinger operator”, Funct. Anal. Appl., 19:4 (1985), 276–285 | DOI | MR | Zbl

[32] P. G. Grinevich, S. P. Novikov, “Two-dimensional ‘inverse scattering problem’ for negative energies and generalized-analytic functions. I. Energies below the ground state”, Funct. Anal. Appl., 22:1 (1988), 19–27 | DOI | MR | Zbl

[33] I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications”, Russian Math. Surveys, 44:2 (1989), 145–225 | DOI | MR | Zbl

[34] B. G. Konopel'chenko, “The two-dimensional second-order differential spectral problem: compatibility conditions, general BTs and integrable equations”, Inverse Problems, 4:1 (1988), 151–163 | DOI | MR | Zbl

[35] I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles”, Funct. Anal. Appl., 14:4 (1980), 282–290 | DOI | MR | Zbl