@article{RM_2015_70_2_a1,
author = {A. S. Galaev},
title = {Holonomy groups of {Lorentzian} manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {249--298},
year = {2015},
volume = {70},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_2_a1/}
}
A. S. Galaev. Holonomy groups of Lorentzian manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 2, pp. 249-298. http://geodesic.mathdoc.fr/item/RM_2015_70_2_a1/
[1] V. P. Akulov, D. V. Volkov, V. A. Soroka, “Gauge fields on superspaces with different holonomy groups”, JETP Lett., 22:7 (1975), 187–188
[2] D. V. Alekseevskii, “Riemannian spaces with exceptional holonomy groups”, Funct. Anal. Appl., 2:2 (1968), 97–105 | DOI | MR | Zbl
[3] D. V. Alekseevskii, “Homogeneous Riemannian spaces of negative curvature”, Math. USSR-Sb., 25:1 (1975), 87–109 | DOI | MR | Zbl
[4] D. V. Alekseevsky, V. Cortés, A. S. Galaev, T. Leistner, “Cones over pseudo-Riemannian manifolds and their holonomy”, J. Reine Angew. Math., 635 (2009), 23–69 | DOI | MR | Zbl
[5] D. V. Alekseevsky, A. S. Galaev, “Two-symmetric Lorentzian manifolds”, J. Geom. Phys., 61:12 (2011), 2331–2340 | DOI | MR | Zbl
[6] D. V. Alekseevskii, B. N. Kimel'fel'd, “Classification of homogeneous conformally flat Riemannian manifolds”, Math. Notes, 24:1 (1978), 559–562 | DOI | MR | Zbl
[7] D. V. Alekseevskij, È. B. Vinberg, A. S. Solodovnikov, “Geometry of spaces of constant curvature”, Geometry, II, Encyclopaedia Math. Sci., 29, Springer, Berlin, 1993, 1–138 | DOI | MR | Zbl
[8] W. Ambrose, I. M. Singer, “A theorem on holonomy”, Trans. Amer. Math. Soc., 75 (1953), 428–443 | DOI | MR | Zbl
[9] S. Armstrong, “Ricci-flat holonomy: a classification”, J. Geom. Phys., 57:6 (2007), 1457–1475 | DOI | MR | Zbl
[10] V. V. Astrakhantsev, “Holonomy groups of four-dimensional pseudo-Riemann spaces”, Math. Notes, 9:1 (1971), 33–37 | DOI | MR | Zbl
[11] A. Batrachenko, M. J. Duff, J. T. Liu, W. Y. Wen, “Generalized holonomy of M-theory vacua”, Nuclear Phys. B, 726:1-2 (2005), 275–293 | DOI | MR | Zbl
[12] H. Baum, “Conformal Killing spinors and the holonomy problem in Lorentzian geometry – a survey of new results”, Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 251–264 | DOI | MR | Zbl
[13] H. Baum, “Holonomy groups of Lorentzian manifolds: a status report”, Global differential geometry, Springer Proc. Math., 17, Springer-Verlag, Berlin–Heidelberg, 2012, 163–200 | DOI | Zbl
[14] H. Baum, A. Juhl, Conformal differential geometry. $Q$-curvature and conformal holonomy, Oberwolfach Semin., 40, Birkhäuser Verlag, Basel, 2010, x+152 pp. | DOI | MR | Zbl
[15] H. Baum, I. Kath, “Parallel spinors and holonomy groups on pseudo-Riemannian spin manifolds”, Ann. Global Anal. Geom., 17:1 (1999), 1–17 | DOI | MR | Zbl
[16] H. Baum, K. Lärz, T. Leistner, “On the full holonomy group of special Lorentzian manifolds”, Math. Z., 277:3-4 (2014), 797–828 | DOI | MR | Zbl
[17] H. Baum, O. Müller, “Codazzi spinors and globally hyperbolic manifolds with special holonomy”, Math. Z., 258:1 (2008), 185–211 | DOI | MR | Zbl
[18] Ya. V. Bazaikin, “On the new examples of complete noncompact $\operatorname{Spin}(7)$-holonomy metrics”, Sib. Math. J., 48:1 (2007), 8–25 | DOI | MR | Zbl
[19] Ya. V. Bazaikin, “Globally hyperbolic Lorentzian spaces with special holonomy groups”, Sib. Math. J., 50:4 (2009), 567–579 | DOI | MR | Zbl
[20] Ya. V. Bazaikin, E. G. Malkovich, “$G_2$-holonomy metrics connected with a 3-Sasakian manifold”, Sib. Math. J., 49:1 (2008), 1–4 | DOI | MR | Zbl
[21] L. Bérard-Bergery, A. Ikemakhen, “On the holonomy of Lorentzian manifolds”, Differential geometry: geometry in mathematical physics and related topics (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 2, Amer. Math. Soc., Providence, RI, 1993, 27–40 | DOI | MR | Zbl
[22] L. Bérard-Bergery, A. Ikemakhen, “Sur l'holonomie des variétés pseudo-riemanniennes de signature $(n,n)$”, Bull. Soc. Math. France, 125:1 (1997), 93–114 | MR | Zbl
[23] M. Berger, “Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes”, Bull. Soc. Math. France, 83 (1955), 279–330 | MR | Zbl
[24] M. Berger, “Les espaces symétriques noncompacts”, Ann. Sci. École Norm. Sup. (3), 74 (1957), 85–177 | MR | Zbl
[25] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. (3), 10, Springer-Verlag, Berlin, 1987, xii+510 pp. | DOI | MR | MR | Zbl | Zbl
[26] N. I. Bezvitnaya, “Holonomy groups of pseudo-quaternionic-Kählerian manifolds of non-zero scalar curvature”, Ann. Global Anal. Geom., 39:1 (2011), 99–105 | DOI | MR | Zbl
[27] N. I. Bezvitnaya, “Holonomy algebras of pseudo-hyper-Kählerian manifolds of index 4”, Differential Geom. Appl., 31:2 (2013), 284–299 | DOI | MR | Zbl
[28] O. F. Blanco, M. Sánchez, J. M. M. Senovilla, “Complete classifcation of second-order symmetric spacetimes”, J. Phys. Conf. Ser., 229:1 (2010), 012021, 5 pp. | DOI
[29] O. F. Blanco, M. Sánchez, J. M. M. Senovilla, “Structure of second-order symmetric Lorentzian manifolds”, J. Eur. Math. Soc. (JEMS), 15:2 (2013), 595–634 | DOI | MR | Zbl
[30] A. Bolsinov, D. Tsonev, “On a new class class of holonomy groups in pseudo-Riemannian geometry”, J. Differential Geom., 97:3 (2014), 377–394 | MR | Zbl
[31] A. Borel, A. Lichnerowicz, “Groupes d'holonomie des variétés riemanniennes”, C. R. Acad. Sci. Paris, 234 (1952), 1835–1837 | MR | Zbl
[32] Ch. Boubel, “On the holonomy of Lorentzian metrics”, Ann. Fac. Sci. Toulouse Math. (6), 16:3 (2007), 427–475 | DOI | MR | Zbl
[33] Ch. Boubel, A. Zeghib, Dynamics of some Lie subgroups of $O(n,1)$, applications, Prépublication de l'ENS Lyon No 315, 2003 http://www.umpa.ens-lyon.fr/UMPA/Prepublications/
[34] C. P. Boyer, K. Galicki, “Sasakian geometry, holonomy, and supersymmetry”, Handbook of pseudo-Riemannian geometry and supersymmetry, IRMA Lect. Math. Theor. Phys., 16, Eur. Math. Soc., Zürich, 2010, 39–83 | DOI | MR | Zbl
[35] J. Brannlund, A. Coley, S. Hervik, “Supersymmetry, holonomy and Kundt spacetimes”, Classical Quantum Gravity, 25:19 (2008), 195007, 10 pp. | DOI | MR | Zbl
[36] J. Brannlund, A. Coley, S. Hervik, “Holonomy, decomposability, and relativity”, Canad. J. Phys., 87:3 (2009), 241–243 | DOI
[37] M. Brozos-Vázquez, E. García-Río, P. Gilkey, S. Nikčević, R. Vázquez-Lorenzo, The geometry of Walker manifolds, Synth. Lect. Math. Stat., 5, Morgan Claypool Publishers, Williston, VT, 2009, xviii+159 pp. | MR | Zbl
[38] R. L. Bryant, “Metrics with exceptional holonomy”, Ann. of Math. (2), 126:3 (1987), 525–576 | DOI | MR | Zbl
[39] R. L. Bryant, “Classical, exceptional and exotic holonomies: a status report”, Actes de la table ronde de géométrie différentielle (Luminy, 1992), Sémin. Congr., 1, Soc. Math. France, Paris, 1996, 93–165 | MR | Zbl
[40] R. Bryant, “Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor”, Global analysis and harmonic analysis (Marseille–Luminy, 1999), Sémin. Congr., 4, Soc. Math. France, Paris, 2000, 53–94 | MR | Zbl
[41] M. Cahen, N. Wallach, “Lorentzian symmetric spaces”, Bull. Amer. Math. Soc., 76:3 (1970), 585–591 | DOI | MR | Zbl
[42] É. Cartan, “Les groupes réels simples finis et continus”, Ann. Sci. École Norm. Sup. (3), 31 (1914), 263–355 | MR | Zbl
[43] É. Cartan, “Sur une classe remarquable d'espaces de Riemann”, Bull. Soc. Math. France, 54 (1926), 214–264 | MR | Zbl
[44] É. Cartan, “Les groupes d'holonomie des espaces généralisés”, Acta. Math., 48:1-2 (1926), 1–42 | DOI | Zbl
[45] S. Cecotti, A geometric introduction to $F$-theory, Lectures Notes SISSA, 2010, 130 pp. http://people.sissa.it/~cecotti/FNOTES10.pdf
[46] A. Coley, A. Fuster, S. Hervik, “Supergravity solutions with constant scalar invariants”, Internat. J. Modern Phys. A, 24:6 (2009), 1119–1133 | DOI | MR | Zbl
[47] M. Cvetič, G. W. Gibbons, H. Lü, C. N. Pope, “New complete noncompact $\operatorname{Spin}(7)$ manifolds”, Nuclear Phys. B, 620:1-2 (2002), 29–54 | DOI | MR | Zbl
[48] G. de Rham, “Sur la réductibilité d'un espace de Riemann”, Comment. Math. Helv., 26 (1952), 328–344 | DOI | MR | Zbl
[49] A. Derdzinski, W. Roter, “The local structure of conformally symmetric manifolds”, Bull. Belg. Math. Soc. Simon Stevin, 16:1 (2009), 117–128 | MR | Zbl
[50] A. J. Di Scala, C. Olmos, “The geometry of homogeneous submanifolds of hyperbolic space”, Math. Z., 237:1 (2001), 199–209 | DOI | MR | Zbl
[51] D. V. Egorov, “QR-submanifolds and Riemannian metrics with holonomy $G_2$”, Math. Notes, 90:5 (2011), 763–766 | DOI | DOI | MR | Zbl
[52] J. M. Figueroa-O'Farrill, “Breaking the M-waves”, Classical Quantum Gravity, 17:15 (2000), 2925–2947 | DOI | MR | Zbl
[53] J. Figueroa-O'Farrill, P. Meessen, S. Philip, “Supersymmetry and homogeneity of M-theory backgrounds”, Classical Quantum Gravity, 22:1 (2005), 207–226 | DOI | MR | Zbl
[54] Th. Friedrich, “Zur Existenz paralleler Spinorfelder über Riemannschen Mannigfaltigkeiten”, Colloq. Math., 44:2 (1981), 277–290 | MR | Zbl
[55] A. S. Galaev, “The spaces of curvature tensors for holonomy algebras of Lorentzian manifolds”, Differential Geom. Appl., 22:1 (2005), 1–18 | DOI | MR | Zbl
[56] A. S. Galaev, “Metrics that realize all Lorentzian holonomy algebras”, Int. J. Geom. Methods Mod. Phys., 3:5-6 (2006), 1025–1045 | DOI | MR | Zbl
[57] A. S. Galaev, “Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups”, Rend. Circ. Mat. Palermo (2) Suppl., 2006, no. 79, 87–97 | MR | Zbl
[58] A. S. Galaev, Holonomy groups and special geometric structures of pseudo-Kählerian manifolds of index 2, PhD thesis, Humboldt Univ., Berlin, 2006, 135 pp. | Zbl
[59] A. S. Galaev, “One component of the curvature tensor of a Lorentzian manifold”, J. Geom. Phys., 60:6-8 (2010), 962–971 | DOI | MR | Zbl
[60] A. S. Galaev, “Holonomy of Einstein Lorentzian manifolds”, Classical Quantum Gravity, 27:7 (2010), 075008, 13 pp. | DOI | MR | Zbl
[61] A. S. Galaev, “On the Einstein equation on Lorentzian manifolds with parallel distributions of isotropic lines”, Fiziko-matematicheskie nauki, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 153, no. 3, Izd-vo Kazan. un-ta, Kazan, 2011, 165–174
[62] A. S. Galaev, “Examples of Einstein spacetimes with recurrent null vector fields”, Classical Quantum Gravity, 28:17 (2011), 175022, 6 pp. | DOI | MR | Zbl
[63] A. S. Galaev, “Irreducible holonomy algebras of Riemannian supermanifolds”, Ann. Global Anal. Geom., 42:1 (2012), 1–27 | DOI | MR | Zbl
[64] A. Galaev, “Some applications of the Lorentzian holonomy algebras”, J. Geom. Symmetry Phys., 26 (2012), 13–31 | MR | Zbl
[65] A. S. Galaev, “Holonomy algebras of Einstein pseudo-Riemannian manifolds”, 2012, 16 pp., arXiv: 1206.6623
[66] A. S. Galaev, “Conformally flat Lorentzian manifolds with special holonomy groups”, Sb. Math., 204:9 (2013), 1264–1284 | DOI | DOI | MR | Zbl
[67] A. S. Galaev, “Pseudo-Riemannian manifolds with recurrent spinor fields”, Sib. Math. J., 54:4 (2013), 604–613 | DOI | MR | Zbl
[68] A. S. Galaev, “About the classification of the holonomy algebras of Lorentzian manifolds”, Sib. Math. J., 54:5 (2013), 798–804 | DOI | MR | Zbl
[69] A. S. Galaev, “Note on the holonomy groups of pseudo-Riemannian manifolds”, Math. Notes, 93:6 (2013), 810–815 | DOI | DOI | MR | Zbl
[70] A. S. Galaev, “On the de Rham–Wu decomposition for Riemannian and Lorentzian manifolds”, Classical Quantum Gravity, 31:13 (2014), 135007, 13 pp. | DOI | MR | Zbl
[71] A. S. Galaev, “How to find the holonomy algebra of a Lorentzian manifold”, Lett. Math. Phys., 105:2 (2015), 199–219 | DOI | MR | Zbl
[72] A. Galaev, T. Leistner, “Holonomy groups of Lorentzian manifolds: classification, examples, and applications”, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, 53–96 | DOI | MR | Zbl
[73] A. S. Galaev, T. Leistner, “Recent developments in pseudo-Riemannian holonomy theory”, Handbook of pseudo-Riemannian geometry and supersymmetry, IRMA Lect. Math. Theor. Phys., 16, Eur. Math. Soc., Zürich, 2010, 581–627 | DOI | MR | Zbl
[74] A. S. Galaev, T. Leistner, “On the local structure of Lorentzian Einstein manifolds with parallel distribution of null lines”, Classical Quantum Gravity, 27:22 (2010), 225003, 16 pp. | DOI | MR | Zbl
[75] R. Ghanam, G. Thompson, “Two special metrics with $R_{14}$-type holonomy”, Classical Quantum Gravity, 18:11 (2001), 2007–2014 | DOI | MR | Zbl
[76] G. W. Gibbons, C. N. Pope, “Time-dependent multi-centre solutions from new metrics with holonomy $\operatorname{Sim}(n-2)$”, Classical Quantum Gravity, 25:12 (2008), 125015, 21 pp. | DOI | MR | Zbl
[77] G. W. Gibbons, “Holonomy old and new”, Progr. Theoret. Phys. Suppl., 177 (2009), 33–41 | DOI | Zbl
[78] J. Grover, J. B. Gutowski, C. A. R. Herdeiro, P. Meessen, A. Palomo-Lozano, W. A. Sabra, “Gauduchon–Tod structures, Sim holonomy and De Sitter supergravity”, J. High Energy Phys., 7 (2009), 069, 20 pp. | DOI | MR
[79] S. S. Gubser, “Special holonomy in string theory and M-theory”, Strings, branes and extra dimensions, TASI 2001, World Sci. Publ., River Edge, NJ, 2004, 197–233 | DOI | MR | Zbl
[80] G. Hall, “Projective relatedness and conformal flatness”, Cent. Eur. J. Math., 10:5 (2012), 1763–1770 | DOI | MR | Zbl
[81] G. S. Hall, D. P. Lonie, “Holonomy groups and spacetimes”, Classical Quantum Gravity, 17:6 (2000), 1369–1382 | DOI | MR | Zbl
[82] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., XII, Academic Press, New York–London, 1962, xiv+486 pp. | MR | Zbl | Zbl
[83] N. Hitchin, “Harmonic spinors”, Adv. in Math., 14:1 (1974), 1–55 | DOI | MR | Zbl
[84] K. Honda, K. Tsukada, “Conformally flat semi-Riemannian manifolds with nilpotent Ricci operators and affine differential geometry”, Ann. Global Anal. Geom., 25:3 (2004), 253–275 | DOI | MR | Zbl
[85] A. Ikemakhen, “Sur l'holonomie des variétés pseudo-riemanniennes de signature $(2,2+n)$”, Publ. Mat., 43:1 (1999), 55–84 | DOI | MR | Zbl
[86] A. Ikemakhen, “Groupes d'holonomie et spineurs parallèles sur les variétés pseudo-riemanniennes complètement réductibles”, C. R. Math. Acad. Sci. Paris, 339:3 (2004), 203–208 | DOI | MR | Zbl
[87] T. Jacobson, J. D. Romano, “The spin holonomy group in general relativity”, Comm. Math. Phys., 155:2 (1993), 261–276 | DOI | MR | Zbl
[88] D. D. Joyce, Compact manifolds with special holonomy, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2000, xii+436 pp. | MR | Zbl
[89] D. Joyce, Riemannian holonomy groups and calibrated geometry, Oxf. Grad. Texts Math., 12, Oxford Univ. Press, Oxford, 2007, x+303 pp. | MR | Zbl
[90] V. R. Kaigorodov, “Structure of space-time curvature”, J. Soviet Math., 28:2 (1985), 256–273 | DOI | MR | Zbl
[91] R. P. Kerr, J. N. Goldberg, “Some applications of the infinitesimal-holonomy group to the Petrov classification of Einstein spaces”, J. Math. Phys., 2:3 (1961), 327–332 | DOI | MR | Zbl
[92] R. P. Kerr, J. N. Goldberg, “Einstein spaces with four-parameter holonomy groups”, J. Math. Phys., 2:3 (1961), 332–336 | DOI | MR | Zbl
[93] V. F. Kirichenko, “Conformally flat and locally conformal Kähler manifolds”, Math. Notes, 51:5 (1992), 462–468 | DOI | MR | Zbl
[94] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. I, II, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1963, 1969, xi+329 pp., xv+470 pp. | MR | MR | MR | MR | Zbl | Zbl
[95] T. Krantz, “Kaluza–Klein-type metrics with special Lorentzian holonomy”, J. Geom. Phys., 60:1 (2010), 74–80 | DOI | MR | Zbl
[96] M. Kurita, “On the holonomy group of the conformally flat Riemannian manifold”, Nagoya Math. J., 9 (1955), 161–171 | MR | Zbl
[97] K. Lärz, Riemannian foliations and the topology of Lorentzian manifolds, 2010, 16 pp., arXiv: 1010.2194
[98] T. Leistner, “Lorentzian manifolds with special holonomy and parallel spinors”, Proceedings of the 21st winter school “Geometry and physics” (Srní, 2001), Rend. Circ. Mat. Palermo (2) Suppl., 2002, no. 69, 131–159 | MR | Zbl
[99] T. Leistner, Holonomy and parallel spinors in Lorentzian geometry, PhD thesis, Humboldt-Univ., Berlin, 2003, xii+178 pp. | Zbl
[100] T. Leistner, “On the classification of Lorentzian holonomy groups”, J. Differential Geom., 76:3 (2007), 423–484 | MR | Zbl
[101] T. Leistner, D. Schliebner, Completeness of compact Lorentzian manifolds with special holonomy, 2013, 30 pp., arXiv: 1306.0120
[102] J. Lewandowski, “Reduced holonomy group and Einstein equations with a cosmological constant”, Classical Quantum Gravity, 9:10 (1992), L147–L151 | DOI | MR | Zbl
[103] B. McInnes, “Methods of holonomy theory for Ricci-flat Riemannian manifolds”, J. Math. Phys., 32:4 (1991), 888–896 | DOI | MR | Zbl
[104] S. Merkulov, L. Schwachhöfer, “Classification of irreducible holonomies of torsion-free affine connections”, Ann. of Math. (2), 150:1 (1999), 77–149 | DOI | MR | Zbl
[105] O. Müller, M. Sánchez, “An invitation to Lorentzian geometry”, Jahresber. Dtsch. Math.-Ver., 115:3-4 (2014), 153–183 | DOI | MR | Zbl
[106] J. D. Norton, “Einstein, Nordström and the early demise of scalar, Lorentz-covariant theories of gravitation”, Arch. Hist. Exact Sci., 45:1 (1992), 17–94 | DOI | MR | Zbl
[107] C. Olmos, “A geometric proof of the Berger holonomy theorem”, Ann. of Math. (2), 161:1 (2005), 579–588 | DOI | MR | Zbl
[108] A. Z. Petrov, Einstein spaces, Pergamon Press, Oxford–Edinburgh–New York, 1969, xiii+411 pp. | MR | MR | Zbl | Zbl
[109] J. F. Schell, “Classification of four-dimensional Riemannian spaces”, J. Math. Phys., 2:2 (1961), 202–206 | DOI | MR | Zbl
[110] R. Schimming, “Riemannsche Räume mit ebenfrontiger und mit ebener Symmetrie”, Math. Nachr., 59:1-6 (1974), 129–162 | DOI | MR | Zbl
[111] L. J. Schwachhöfer, “Connections with irreducible holonomy representations”, Adv. Math., 160:1 (2001), 1–80 | DOI | MR | Zbl
[112] J. M. M. Senovilla, “Second-order symmetric Lorentzian manifolds. I. Characterization and general results”, Classical Quantum Gravity, 25:24 (2008), 245011, 25 pp. | DOI | MR | Zbl
[113] R. Hernández, K. Sfetsos, D. Zoakos, “Supersymmetry and Lorentzian holonomy in various dimensions”, J. High Energy Phys., 9 (2004), 010, 17 pp. | DOI | MR
[114] J. Simons, “On the transitivity of holonomy systems”, Ann. of Math. (2), 76:2 (1962), 213–234 | DOI | MR | Zbl
[115] V. V. Slavskii, “Conformally-flat metrics and pseudo-Euclidean geometry”, Sib. Math. J., 35:3 (1994), 605–613 | DOI | MR | Zbl
[116] R. S. Strichartz, “Linear algebra of curvature tensors and their covariant derivatives”, Canad. J. Math., 40:5 (1988), 1105–1143 | DOI | MR | Zbl
[117] S. Tanno, “Curvature tensors and covariant derivatives”, Ann. Mat. Pura Appl. (4), 96:1 (1973), 233–241 | DOI | MR | Zbl
[118] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990, xx+328 pp. | DOI | MR | MR | Zbl | Zbl
[119] V. P. Vizgin, Relyativistskaya teoriya tyagoteniya (istoki i formirovanie, 1900–1915), Nauka, M., 1981, 352 pp. | MR | Zbl
[120] A. G. Walker, “On parallel fields of partially null vector spaces”, Quart. J. Math., Oxford Ser., 20 (1949), 135–145 | DOI | MR | Zbl
[121] M. Y. Wang, “Parallel spinors and parallel forms”, Ann. Global Anal. Geom., 7:1 (1989), 59–68 | DOI | MR | Zbl
[122] H. Wu, “On the de Rham decomposition theorem”, Illinois J. Math., 8:2 (1964), 291–311 | MR | Zbl
[123] S.-T. Yau, “On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I”, Comm. Pure Appl. Math., 31:3 (1978), 339–411 | DOI | MR | Zbl