Groups of line and circle homeomorphisms. Metric invariants and questions of classification
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 2, pp. 203-248 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach to a classification of groups of line and circle homeomorphisms is discussed, based on chains of inclusions and correspondences of group classes which are induced by various characteristics of the groups. Bibliography: 60 titles.
Keywords: groups of line (circle) homeomorphisms, projectively invariant measures, amenability, free subgroups, growth of a group.
@article{RM_2015_70_2_a0,
     author = {L. A. Beklaryan},
     title = {Groups of line and circle homeomorphisms. {Metric} invariants and questions of classification},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {203--248},
     year = {2015},
     volume = {70},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_2_a0/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - Groups of line and circle homeomorphisms. Metric invariants and questions of classification
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 203
EP  - 248
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_2_a0/
LA  - en
ID  - RM_2015_70_2_a0
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T Groups of line and circle homeomorphisms. Metric invariants and questions of classification
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 203-248
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2015_70_2_a0/
%G en
%F RM_2015_70_2_a0
L. A. Beklaryan. Groups of line and circle homeomorphisms. Metric invariants and questions of classification. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 2, pp. 203-248. http://geodesic.mathdoc.fr/item/RM_2015_70_2_a0/

[1] S. I. Adian, The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb., 95, Springer-Verlag, Berlin–New York, 1979, xi+311 pp. | MR | MR | Zbl | Zbl

[2] S. I. Adian, “Random walks on free periodic groups”, Math. USSR-Izv., 21:3 (1983), 425–434 | DOI | MR | Zbl

[3] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, 10, D. Van Nostrand Co., Inc., Toronto, ON–New York–London, 1966, v+146 pp. | MR | MR | Zbl | Zbl

[4] L. V. Ahlfors, Möbius transformations in several dimensions, Ordway Professorship Lectures Math., Univ. Minnesota, School of Mathematics, Minneapolis, MN, 1981, ii+150 pp. | MR | MR | Zbl | Zbl

[5] D. V. Anosov, “On the contribution of N. N. Bogolyubov to the theory of dynamical systems”, Russian Math. Surveys, 49:5 (1994), 1–18 | DOI | MR | Zbl

[6] L. A. Beklaryan, “The structure of the quotient group of the group of orientation-preserving homeomorphisms of $\mathbb{R}$ by the subgroup generated by the union of the stabilizers”, Russian Acad. Sci. Dokl. Math., 48:1 (1994), 37–39 | MR | Zbl

[7] L. A. Beklaryan, “Invariant and projectively invariant measures for groups of orientation-preserving homeomorphisms of $\mathbb{R}$”, Russian Acad. Sci. Dokl. Math., 48:2 (1994), 387–390 | MR | Zbl

[8] L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. I. Invariant measures”, Sb. Math., 187:3 (1996), 335–364 | DOI | DOI | MR | Zbl

[9] L. A. Beklaryan, “A criterion connected with the structure of the fixed-point set for the existence of a projectively invariant measure for groups of orientation-preserving homeomorphisms of $\mathbb R$”, Russian Math. Surveys, 51:3 (1996), 539–540 | DOI | DOI | MR | Zbl

[10] L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. II. Projectively-invariant measures”, Sb. Math., 187:4 (1996), 469–494 | DOI | DOI | MR | Zbl

[11] L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. III. $\omega$-projectively invariant measures”, Sb. Math., 190:4 (1999), 521–538 | DOI | DOI | MR | Zbl

[12] L. A. Beklaryan, “On a criterion for the topological conjugacy of a quasisymmetric group to a group of affine transformations of $\mathbb R$”, Sb. Math., 191:6 (2000), 809–819 | DOI | DOI | MR | Zbl

[13] L. A. Beklaryan, “On analogs of the Tits alternative for groups of homeomorphisms of the circle and of the line”, Math. Notes, 71:3 (2002), 305–315 | DOI | DOI | MR | Zbl

[14] L. A. Beklaryan, “Groups of homeomorphisms of the line and the circle. Topological characteristics and metric invariants”, Russian Math. Surveys, 59:4 (2004), 599–660 | DOI | DOI | MR | Zbl

[15] L. A. Beklaryan, Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii. Gruppovoi podkhod, Faktorial Press, M., 2007, 288 pp.

[16] L. A. Beklaryan, “Group specialities in the problem of the maximum principle for systems with deviating argument”, J. Dyn. Control Syst., 18:3 (2012), 419–432 | DOI | MR | Zbl

[17] L. A. Beklaryan, “Residual subsets in the space of finitely generated groups of diffeomorphisms of the circle”, Math. Notes, 93:1 (2013), 29–35 | DOI | DOI | MR | Zbl

[18] L. A. Beklaryan, “Criteria for the existence of an invariant measure for groups of homeomorphisms of the line”, Math. Notes, 95:3 (2014), 304–307 | DOI | DOI

[19] L. A. Beklaryan, “Groups of homeomorphisms of the line. Criteria for the existence of invariant and projectively invariant measures in terms of the commutator subgroup”, Sb. Math., 205:12 (2014), 1741–1760 | DOI | DOI

[20] M. C. Brin, C. C. Squier, “Groups of piecewice linear homeomorphisms on the real line”, Invent. Math., 79:3 (1985), 485–498 | DOI | MR | Zbl

[21] J. F. Cannon, W. J. Floyd, W. R. Parry, “Introductory notes on Richard Thompson's groups”, Enseign. Math. (2), 42:3–4 (1996), 215–256 ; РЖМат, 1998, 1L203 | MR | Zbl

[22] T. G. Ceccherini-Silberstein, “Around amenability”, J. Math. Sci. (N. Y.), 106:4 (2001), 3145–3163 | DOI | MR | Zbl

[23] M. M. Day, “Amenable semigroups”, Illinois J. Math., 1:4 (1957), 509–544 | MR | Zbl

[24] R. I. Grigorchuk, T. Ceccherini-Silberstein, P. de la Harpe, “Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces”, Proc. Steklov Inst. Math., 224 (1999), 57–97 | MR | Zbl

[25] B. Deroin, V. Kleptsyn, A. Navas, “Sur la dynamique unidimensionnelle en régularité intermédiaire”, Acta Math., 199:2 (2007), 199–262 | DOI | MR | Zbl

[26] M. Ershov, G. Golan, M. Sapir, The Tarski numbers of groups, 2014, 26 pp., arXiv: 1401.2202

[27] B. Farb, J. Franks, “Groups of homeomorphisms of one-manifolds. III. Nilpotent supgroups”, Ergodic Theory Dynam. Systems, 23:5 (2003), 1467–1484 | DOI | MR | Zbl

[28] É. Ghys, “Groups acting on the circle”, Enseign. Math. (2), 47:3-4 (2001), 329–407 | MR | Zbl

[29] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., New York–Toronto, ON–London, 1969, ix+113 pp. | MR | Zbl | Zbl

[30] R. I. Grigorchuk, “Degrees of growth of finitely generated groups, and the theory of invariant means”, Math. USSR-Izv., 25:2 (1985), 259–300 | DOI | MR | Zbl

[31] R. I. Grigorchuk, “An example of a finitely presented amenable group not belonging to the class $EG$”, Sb. Math., 189:1 (1998), 75–95 | DOI | DOI | MR | Zbl

[32] R. I. Grigorchuk, P. F. Kurchanov, “Some questions of group theory related to geometry”, Algebra, VII, Encyclopaedia Math. Sci., 58, Springer, Berlin, 1993, 167–232 | MR | MR | Zbl | Zbl

[33] R. I. Grigorchuk, A. Maki, “A group of intermediate growth acting by homomorphisms on the real line”, Math. Notes, 53:2 (1993), 146–157 | DOI | MR | Zbl

[34] M. Gromov, “Hyperbolic groups”, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 | DOI | MR | Zbl

[35] M. Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 53:1 (1981), 53–78 | DOI | MR | Zbl

[36] Yu. I. Karlovich, “$C^*$-algebras of operators of convolution type with discrete groups of shifts and with oscillating coefficients”, Soviet Math. Dokl., 38:2 (1989), 301–307 | MR | Zbl

[37] N. Kryloff, N. Bogoliouboff, “La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire”, Ann. of Math. (2), 38:1 (1937), 65–113 | DOI | MR | Zbl

[38] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982, x+486 pp. | DOI | MR | MR | Zbl | Zbl

[39] A. G. Kurosh, Lectures in general algebra, Internat. Ser. Monogr. Pure Appl. Math., 70, Pergamon Press, Oxford–Edinburgh–New York, 1965, x+364 pp. | MR | MR | Zbl | Zbl

[40] G. Margulis, “Free subgroups of the homeomorphism group of the circle”, C. R. Acad. Sci. Paris Sér. I Math., 331:9 (2000), 669–674 | DOI | MR | Zbl

[41] A. Navas, “Group of circle diffeomorphisms”, 2006 (v3 – 2009), 224, arXiv: math/0607481

[42] S. P. Novikov, “Topology of foliations”, Trans. Moscow Math. Soc., 14, Amer. Math. Soc., Providence, RI, 1965, 268–304 | MR | Zbl

[43] A. Yu. Ol'shanskii, “On the problem of the existence of an invariant mean on a group”, Russian Math. Surveys, 35:4 (1980), 180–181 | DOI | MR | Zbl

[44] J. F. Plante, “Foliations with measure preserving holonomy”, Ann. of Math. (2), 102:2 (1975), 327–361 | DOI | MR | Zbl

[45] J. F. Plante, “Solvable groups acting on the line”, Trans. Amer. Math. Soc., 278:1 (1983), 401–414 | DOI | MR | Zbl

[46] J. F. Plante, W. P. Thurston, “Polynomial growth in holonomy groups of foliations”, Comment. Math. Helv., 51:4 (1976), 567–584 | DOI | MR | Zbl

[47] A. P. Robertson, W. J. Robertson, Topological vector spaces, Cambridge Tracts in Mathematics and Mathematical Physics, 53, Cambridge Univ. Press, New York, 1964, viii+158 pp. | MR | MR | Zbl | Zbl

[48] J. M. Rosenblatt, “Invariant measures and growth conditions”, Trans. Amer. Math. Soc., 193 (1974), 33–53 | DOI | MR | Zbl

[49] E. Salhi, “Sur les ensembles minimaux locaux”, C. R. Acad. Sci. Paris Sér. I Math., 295:12 (1982), 691–694 | MR | Zbl

[50] E. Salhi, “Sur un théorème de structure de feuilletages de codimension 1”, C. R. Acad. Sci. Paris Sér. I Math., 300:18 (1985), 635–638 | MR | Zbl

[51] E. Salhi, “Niveau de feuilles”, C. R. Acad. Sci. Paris Sér. I Math., 301:5 (1985), 219–222 | MR | Zbl

[52] M. V. Sapir, Combinatorial algebra: syntax and semantics, Springer Monogr. Math., Springer, Cham, 2014, xvi+355 pp. | DOI | MR | Zbl

[53] V. V. Solodov, “Homeomorphisms of the line and a foliation”, Math. USSR-Izv., 21:2 (1983), 341–354 | DOI | MR | Zbl

[54] V. V. Solodov, “Homeomorphisms of the circle and a foliation”, Math. USSR-Izv., 24:3 (1985), 553–566 | DOI | MR | Zbl

[55] A. M. Stepin, “Approximability of groups and group actions”, Russian Math. Surveys, 38:6 (1983), 131–132 | DOI | MR | Zbl

[56] A. M. Stepin, “Approximation of groups and group actions, the Cayley topology”, Ergodic theory of $\mathbb Z^d$ actions (Warwick, 1993–1994), London Math. Soc. Lecture Note Ser., 228, Cambridge Univ. Press, Cambridge, 1996, 475–484 | DOI | MR | Zbl

[57] A. Tarski, Cardinal algebras, Oxford Univ. Press, New York, NY, 1949, xii+326 pp. | MR | Zbl

[58] J. Tits, “Free subgroups in linear groups”, J. Algebra, 20:2 (1972), 250–270 | DOI | MR | Zbl | Zbl

[59] A. M. Vershik, “Schetnye gruppy, blizkie k konechnym”, Dobavlenie k kn.: F. Grinlif, Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973, 112–135

[60] S. Wagon, The Banach–Tarski paradox, Encyclopedia Math. Appl., 24, Camdridge Univ. Press, Cambridge, 1985, xvi+251 pp. | DOI | MR | Zbl