@article{RM_2015_70_1_a3,
author = {I. D. Shkredov},
title = {Structure theorems in additive combinatorics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {113--163},
year = {2015},
volume = {70},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_1_a3/}
}
I. D. Shkredov. Structure theorems in additive combinatorics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 1, pp. 113-163. http://geodesic.mathdoc.fr/item/RM_2015_70_1_a3/
[1] M. B. Nathanson, Additive number theory. Inverse problems and the geometry of sumsets, Grad. Texts in Math., 165, Springer-Verlag, New York, 1996, xiv+293 pp. | DOI | MR | Zbl
[2] T. Tao, V. Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006, xviii+512 pp. | DOI | MR | Zbl
[3] B. Green, “Finite field models in additive combinatorics”, Surveys in combinatorics, London Math. Soc. Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, 2005, 1–28 | DOI | MR | Zbl
[4] I. D. Shkredov, “Teorema Semeredi i zadachi ob arifmeticheskikh progressiyakh”, UMN, 61:6(372) (2006), 111–178 | DOI | MR | Zbl
[5] B. Green, Approximate algebraic structure, 2014, 25 pp., arXiv: 1404.0093v1
[6] W. T. Gowers, “Rough structure and classification”, GAFA 2000 “Visions in mathematics” (Tel Aviv, 1999), Geom. Funct. Anal., 2000, Special volume, Part I, 79–117 | DOI | MR | Zbl
[7] G. A. Freiman, Nachala strukturnoi teorii slozheniya mnozhestv, Kazan. gos. ped. in-t, Kazan, 1966, 140 pp. | MR | Zbl
[8] W. T. Gowers, “A new proof of Szemerédi's theorem for arithmetic progressions of length four”, Geom. Funct. Anal., 8:3 (1998), 529–551 | DOI | MR | Zbl
[9] W. T. Gowers, “A new proof of Szemerédi's theorem”, Geom. Funct. Anal., 11:3 (2001), 465–588 | DOI | MR | Zbl
[10] B. Green, T. Tao, “An inverse theorem for the Gowers $U^3(G)$ norm”, Proc. Edinb. Math. Soc. (2), 51:1 (2008), 73–153 | DOI | MR | Zbl
[11] B. Green, T. Tao, T. Ziegler, “An inverse theorem for the Gowers $U^4$-norm”, Glasg. Math. J., 53:1 (2011), 1–50 | DOI | MR | Zbl
[12] B. Green, T. Tao, T. Ziegler, “An inverse theorem for the Gowers $U^{s+1} [N]$-norm”, Electron. Res. Announc. Math. Sci., 18 (2011), 69–90 | DOI | MR | Zbl
[13] B. Green, T. Tao, T. Ziegler, “An inverse theorem for the Gowers $U^{s+1} [N]$-norm”, Ann. of Math. (2), 176:2 (2012), 1231–1372 | DOI | MR | Zbl
[14] B. Green, T. Tao, “Linear equations in primes”, Ann. of Math. (2), 171:3 (2010), 1753–1850 ; (2006 (v2 – 2008)), 83 pp., arXiv: math/0606088v1 | DOI | MR | Zbl
[15] B. Green, “Generalising the Hardy–Littlewood method for primes”, International congress of mathematicians, v. II, Eur. Math. Soc., Zürich, 2006, 373–399 | MR | Zbl
[16] S. Lovett, R. Meshulam, A. Samorodnitsky, “Inverse conjecture for the Gowers norm is false”, Theory Comput., 7 (2011), 131–145 ; (2007 (v3 – 2008)), 20 pp., arXiv: 0711.3388v1 | DOI | MR | Zbl
[17] A. Samorodnitsky, L. Trevisan, “Gowers uniformity, influence of variables, and PCPs”, SIAM J. Comput., 39:1 (2009), 323–360 | DOI | MR | Zbl
[18] A. Samorodnitsky, “Low-degree tests at large distances”, STOC '07 – Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New York, 2007, 506–515 | DOI | MR | Zbl
[19] M. Bateman, N. H. Katz, “New bounds on cap sets”, J. Amer. Math. Soc., 25:2 (2012), 585–613 | DOI | MR | Zbl
[20] M. Bateman, N. H. Katz, Structure in additively nonsmoothing sets, 2011, 18 pp., arXiv: 1104.2862v1
[21] T. Schoen, I. D. Shkredov, “Higher moments of convolutions”, J. Number Theory, 133:5 (2013), 1693–1737 | DOI | MR | Zbl
[22] I. D. Shkredov, “Neskolko novykh rezultatov o starshikh energiyakh”, Tr. MMO, 74, no. 1, MTsNMO, M., 2013, 35–73 | MR | Zbl
[23] I. D. Shkredov, “Energies and structure of additive sets”, Electron. J. Combin., 21:3 (2014), paper 3.44, 53 pp. | MR | Zbl
[24] E. Croot, O. Sisask, “A probabilistic technique for finding almost-periods of convolutions”, Geom. Funct. Anal., 20:6 (2010), 1367–1396 | DOI | MR | Zbl
[25] E. Croot, I. Łaba, O. Sisask, “Arithmetic progressions in sumsets and $L^p$-almost-periodicity”, Combin. Probab. Comput., 22:3 (2013), 351–365 ; (2011 (v2 – 2013)), 13 pp., arXiv: 1103.6000v1 | DOI | MR | Zbl
[26] M.-C. Chang, “A polynomial bound in Freiman's theorem”, Duke Math. J., 113:3 (2002), 399–419 | DOI | MR | Zbl
[27] T. Sanders, “The structure theory of set addition revisited”, Bull. Amer. Math. Soc. (N. S.), 50:1 (2013), 93–127 | DOI | MR | Zbl
[28] B. Green, “Montréal notes on quadratic Fourier analysis”, Additive combinatorics, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007, 69–102 ; 2006 (v2 – 2007), 34 pp., arXiv: math.CA/0604089v1 | MR | Zbl
[29] W. Rudin, Fourier analysis on groups, Reprint of the 1962 original, Wiley Classics Lib., John Wiley Sons, Inc., 1990, x+285 pp. | DOI | MR | Zbl
[30] I. M. Vinogradov, Osnovy teorii chisel, 10-e izd., ster., Lan, SPb., 2004, 176 pp. ; I. M. Vinogradov, Elements of number theory, Dover Publications, Inc., New York, 1954, viii+227 pp. | MR | Zbl | MR | Zbl
[31] S. V. Konyagin, I. E. Shparlinski, Character sums with exponential functions and their applications, Cambridge Tracts in Math., 136, Cambridge Univ. Press, Cambridge, 1999, viii+163 pp. | DOI | MR | Zbl
[32] N. Alon, J. Spencer, The probabilistic method, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley Sons, Inc., New York, 1992, xvi+254 pp. | MR | Zbl
[33] I. D. Shkredov, “Analiz Fure v kombinatornoi teorii chisel”, UMN, 65:3(393) (2010), 127–184 | DOI | MR | Zbl
[34] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, 2-e izd., Nauka, M., 1983, 240 pp. ; A. A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993, xiv+222 pp. | MR | Zbl | DOI | MR | Zbl
[35] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989, 240 pp. ; N. M. Korobov, Exponential sums and their applications, Math. Appl. (Soviet Ser.), 80, Kluwer Academic Publishers Group, Dordrecht, 1992, xvi+209 pp. | MR | Zbl | DOI | MR | Zbl
[36] T. Schoen, “Near optimal bounds in Freiman's theorem”, Duke Math. J., 158:1 (2011), 1–12 | DOI | MR | Zbl
[37] T. Sanders, “On the Bogolyubov–Ruzsa lemma”, Anal. PDE, 5:3 (2012), 627–655 | DOI | MR | Zbl
[38] M. Kneser, “Abschätzung der asymptotischen Dichte von Summenmengen”, Math. Z., 58:1 (1953), 459–484 | DOI | MR | Zbl
[39] B. Green, I. Z. Ruzsa, “Freiman's theorem in an arbitrary abelian group”, J. Lond. Math. Soc. (2), 75:1 (2007), 163–175 | DOI | MR | Zbl
[40] T. Tao, “Product set estimates for non-commutative groups”, Combinatorica, 28:5 (2008), 547–594 | DOI | MR | Zbl
[41] H. A. Helfgott, “Growth and generation in $\mathrm{SL}_2 (\mathbb Z/p\mathbb Z)$”, Ann. of Math. (2), 167:2 (2008), 601–623 | DOI | MR | Zbl
[42] H. A. Helfgott, “Growth in $\mathrm{SL}_3 (\mathbb Z/p\mathbb Z)$”, J. Eur. Math. Soc. (JEMS), 13:3 (2011), 761–851 | DOI | MR | Zbl
[43] E. Breuillard, B. Green, T. Tao, “The structure of approximate groups”, Publ. Math. Inst. Hautes Études Sci., 116:1 (2012), 115–221 | DOI | MR | Zbl
[44] E. Hrushovski, “Stable group theory and approximate subgroups”, J. Amer. Math. Soc., 25:1 (2012), 189–243 ; (2009 (v4 – 2011)), 32 pp., arXiv: 0909.2190v1 | DOI | MR | Zbl
[45] M. Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 53:1 (1981), 53–78 | DOI | MR | Zbl
[46] B. Green, Notes on the polynomial Freiman–Ruzsa conjecture http://people.maths.ox.ac.uk/greenbj/papers/PFR.pdf
[47] I. Z. Ruzsa, “An analog of Freiman's theorem in groups”, Structure theory of set addition, Astérisque, 258, Soc. Math. France, Paris, 1999, xv, 323–326 | MR | Zbl
[48] Y. Bilu, “Structure of sets with small sumset”, Structure theory of sets addition, Astérisque, 258, Soc. Math. France, Paris, 1999, xi, 77–108 | MR | Zbl
[49] I. Z. Ruzsa, “Generalized arithmetical progressions and sumsets”, Acta Math. Hungar., 65:4 (1994), 379–388 | DOI | MR | Zbl
[50] J. Bourgain, “Roth's theorem on progressions revisited”, J. Anal. Math., 104:1 (2008), 155–192 | DOI | MR | Zbl
[51] B. Green, T. Tao, “A note on the Freiman and Balog–Szemerédi–Gowers theorems in finite fields”, J. Aust. Math. Soc., 86:1 (2009), 61–74 | DOI | MR | Zbl
[52] B. Green, T. Tao, “Freiman's theorem in finite fields via extremal set theory”, Combin. Probab. Comput., 18:3 (2009), 335–355 | DOI | MR | Zbl
[53] T. Sanders, Another proof of a Freiman-type theorem, 2007 (v2 – 2010), 11 pp., arXiv: 0710.2545v1
[54] M.-C. Chang, “Some consequences of the polynomial Freiman–Ruzsa conjecture”, C. R. Math. Acad. Sci. Paris, 347:11-12 (2009), 583–588 | DOI | MR | Zbl
[55] B. Green, T. Tao, “An equivalence between inverse sumset theorems and inverse conjectures for the $U^3$-norm”, Math. Proc. Cambridge Philos. Soc., 149:1 (2010), 1–19 | DOI | MR | Zbl
[56] B. Green, T. Tao, The Möbius and nilsequences conjecture, 2008 (v4 – 2011), 20 pp., arXiv: 0807.1736v1
[57] B. Green, T. Tao, “The primes contain arbitrarily long arithmetic progressions”, Ann. of Math. (2), 167:2 (2008), 481–547 | DOI | MR | Zbl
[58] N. G. Chudakov, “O plotnosti sovokupnosti chetnykh chisel, nepredstavimykh kak summa dvukh nechetnykh prostykh”, Izv. AN SSSR. Ser. matem., 2:1 (1938), 25–40 | Zbl
[59] J. G. van der Corput, “Über Summen von Primzahlen und Primzahlquadraten”, Math. Ann., 116:1 (1939), 1–50 | DOI | MR | Zbl
[60] S. Chowla, “There exists an infinity of 3-combinations of primes in A. P.”, Proc. Lahore Philos. Soc., 6:2 (1944), 15–16 | MR | Zbl
[61] E. Szemerédi, “On sets of integers containing no four elements in arithmetic progression”, Acta Math. Acad. Sci. Hungar., 20:1-2 (1969), 89–104 | DOI | MR | Zbl
[62] E. Szemerédi, “On sets of integers containing no $k$ elements in arithmetic progression”, Acta Arith., 27 (1975), 199–245 | MR | Zbl
[63] E. Szemerédi, V. Vu, “Long arithmetic progressions in sumsets: thresholds and bounds”, J. Amer. Math. Soc., 19:1 (2006), 119–169 | DOI | MR | Zbl
[64] T. Tao, V. Vu, “On the singularity probability of random Bernoulli matrices”, J. Amer. Math. Soc., 20:3 (2007), 603–628 | DOI | MR | Zbl
[65] T. Schoen, I. D. Shkredov, “Roth's theorem in many variables”, Israel J. Math., 199:1 (2014), 287–308 | DOI | MR | Zbl
[66] F. A. Behrend, “On sets of integers which contain no three terms in arithmetic progression”, Proc. Natl. Acad. Sci. USA, 32:12 (1946), 331–332 | DOI | MR | Zbl
[67] J. Bourgain, “On aritmetic progressions in sums of sets of integers”, A tribute to Paul Erdős, Cambridge Univ. Press, Cambridge, 1990, 105–109 | DOI | MR | Zbl
[68] I. Z. Ruzsa, “Arithmetic progressions in sumsets”, Acta Arith., 60:2 (1991), 191–202 | MR | Zbl
[69] G. A. Freiman, H. Halberstam, I. Z. Ruzsa, “Integer sum sets containing long arithmetic progressions”, J. Lond. Math. Soc. (2), 46:2 (1992), 193–201 | DOI | MR | Zbl
[70] J. Solymosi, “Arithmetic progressions in sets with small sumsets”, Combin. Probab. Comput., 15:4 (2006), 597–603 ; (2005), 6 pp., arXiv: math/0503649 | DOI | MR | Zbl
[71] T. Sanders, “Additive structures in sumsets”, Math. Proc. Cambridge Philos. Soc., 144:2 (2008), 289–316 ; (2006 (v2 – 2010)), 26 pp., arXiv: math/0605520v1 | DOI | MR | Zbl
[72] B. Green, “Arithmetic progressions in sumsets”, Geom. Funct. Anal., 12:3 (2002), 584–597 | DOI | MR | Zbl
[73] K. Henriot, “On arithmetic progressions in $A+B+C$”, Int. Math. Res. Not. IMRN, 2014:18 (2014), 5134–5164 | DOI | MR | Zbl
[74] W. Rudin, “Trigonometric series with gaps”, J. Math. Mech., 9 (1960), 203–227 | MR | Zbl
[75] S. V. Konyagin, I. Łaba, “Distance sets of well-distributed planar sets for polygonal norms”, Israel J. Math., 152:1 (2006), 157–179 | DOI | MR | Zbl
[76] B. Green, T. Sanders, “A quantitative version of the idempotent theorem in harmonic analysis”, Ann. of Math. (2), 168:3 (2008), 1025–1054 | DOI | MR | Zbl
[77] B. Green, T. Sanders, “Boolean functions with small spectral norm”, Geom. Funct. Anal., 18:1 (2008), 144–162 ; (2006 (v2 – 2010)), 17 pp., arXiv: math/0605524v1 | DOI | MR | Zbl
[78] T. Sanders, Indicator functions in the Fourier–Eymard algebra, 2009 (v2 – 2010), 76 pp., arXiv: 0912.0308v1
[79] T. Sanders, An application of a local version of Chang's theorem, 2006, 13 pp., arXiv: math/0607668v1
[80] S. V. Konyagin, I. D. Shkredov, On Wiener norm of subsets of $\mathbb{Z}_p$ of medium size, 2014, 15 pp., arXiv: 1403.8129v1
[81] N. Bogoliouboff, “Sur quelques propriétés arithmétiques des presque-périodes”, Ann. Chaire Phys. Math. Kiev, 4 (1939), 185–205 | MR | Zbl
[82] T. Sanders, “A note on Freĭman's theorem in vector spaces”, Combin. Probab. Comput., 17:2 (2008), 297–305 | DOI | MR | Zbl
[83] T. Sanders, “Appendix to ‘Roth’s theorem on progressions revisited' by J. Bourgain”, J. Anal. Math., 104 (2008), 193–206 ; (2007 (v1 – 2007, v4 – 2010 )), 11 pp., arXiv: 0710.0642v2 | DOI | MR | Zbl
[84] S. V. Konyagin, “O teoreme Freimana v konechnykh polyakh”, Matem. zametki, 84:3 (2008), 472–474 | DOI | MR | Zbl
[85] C. Even-Zohar, “On sums of generating sets in $\mathbb{Z}_2^n$”, Combin. Probab. Comput., 21:6 (2012), 916–941 ; (2011 (v2 – 2012)), 21 pp., arXiv: 1108.4902v1 | DOI | MR | Zbl
[86] C. Even-Zohar, S. Lovett, “The Freiman–Ruzsa theorem over finite fields”, J. Combin. Theory Ser. A, 125 (2014), 333–341 | DOI | MR | Zbl
[87] H. Plünnecke, Eigenschaften und Abschätzungen von Wirkungsfunktionen, Ber. Gesellsch. Math. Datenverarb., 22, Gesellschaft für Mathematik und Datenverarbeitung, Bonn, 1969, iii+173 pp. | MR | Zbl
[88] I. Z. Ruzsa, “An application of graph theory to additive number theory”, Sci. Ser. A Math. Sci. (N. S.), 3 (1989), 97–109 | MR | Zbl
[89] G. Petridis, “New proofs of Plünnecke-type estimates for product sets in groups”, Combinatorica, 32:6 (2012), 721–733 | DOI | MR | Zbl
[90] G. Petridis, “Plünnecke's inequality”, Combin. Probab. Comput., 20:6 (2011), 921–938 | DOI | MR | Zbl
[91] I. Z. Ruzsa, “Sumsets and structure”, Combinatorial number theory and additive group theory, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2009, 87–210 | DOI | MR | Zbl
[92] A. G. Khovanskii, “Mnogogrannik Nyutona, polinom Gilberta i summy konechnykh mnozhestv”, Funkts. analiz i ego pril., 26:4 (1992), 57–63 | MR | Zbl
[93] M. B. Nathanson, I. Z. Ruzsa, “Polynomial growth of sumsets in abelian semigroups”, J. Théor. Nombres Bordeaux, 14:2 (2002), 553–560 | DOI | MR | Zbl
[94] T. Sanders, “On a theorem of Shkredov”, Online J. Anal. Comb., 2010, no. 5, 4 pp. (electronic only) | MR | Zbl
[95] T. Schoen, I. D. Shkredov, Additive dimension and a theorem of Sanders, 2014, 20 pp., arXiv: 1404.2044v1
[96] T. Sanders, “On Roth's theorem on progressions”, Ann. of Math. (2), 174:1 (2011), 619–636 | DOI | MR | Zbl
[97] A. A. Yudin, “O mere bolshikh znachenii trigonometricheskikh summ”, Teoretiko-\allowbreakchislovye issledovaniya po spektru Markova i strukturnoi teorii slozheniya mnozhestv, eds. G. A. Freiman, A. M. Rubinov, E. V. Novoselov, Kalininskii gos. un-t, Kalinin, 1973, 163–171 | MR | Zbl
[98] J. M. López, K. A. Ross, Sidon sets, Lecture Notes in Pure and Appl. Math., 13, Marcel Dekker, Inc., New York, 1975, v+193 pp. | MR | Zbl
[99] B. Green, “Spectral structure of sets of integers”, Fourier analysis and convexity, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2004, 83–96 | MR | Zbl
[100] B. Green, ICMS Instructional Conference in Combinatorial Aspects of Mathematical Analysis (Edinburgh), 2002, 27 pp.
[101] I. D. Shkredov, “O mnozhestvakh bolshikh trigonometricheskikh summ”, Izv. RAN. Ser. matem., 72:1 (2008), 161–182 | DOI | MR | Zbl
[102] I. D. Shkredov, “Nekotorye primery mnozhestv bolshikh trigonometricheskikh summ”, Matem. sb., 198:12 (2007), 105–140 | DOI | MR | Zbl
[103] I. D. Shkredov, “On sumsets of dissociated sets”, Online J. Anal. Comb., 2009, no. 4, 26 pp. (electronic only) | MR | Zbl
[104] T. F. Bloom, A quantitative improvement of Roth's theorem on arithmetic progressions, 2014, 20 pp., arXiv: 1405.5800v1
[105] J. Bourgain, “On triples in arithmetic progression”, Geom. Funct. Anal., 9:5 (1999), 968–984 | DOI | MR | Zbl
[106] J. Bourgain, N. Katz, T. Tao, “A sum-product estimate in finite fields, and applications”, Geom. Funct. Anal., 14:1 (2004), 27–57 | DOI | MR | Zbl
[107] M.-C. Chang, “The Erdős–Szemerédi problem on sum set and product set”, Ann. of Math. (2), 157:3 (2003), 939–957 | DOI | MR | Zbl
[108] M.-C. Chang, “On problems of Erdös and Rudin”, J. Funct. Anal., 207:2 (2004), 444–460 | DOI | MR | Zbl
[109] T. Schoen, “New bounds in Balog–Szemerédi–Gowers theorem”, Combinatorica, 34:5 (2014), 7 pp. ; www.staff.amu.edu.pl/~schoen/remark-B-S-G.pdf | DOI
[110] J. Bourgain, M. Z. Garaev, “On a variant of sum-product estimates and explicit exponential sum bounds in prime fields”, Math. Proc. Cambridge Philos. Soc., 146:1 (2009), 1–21 | DOI | MR | Zbl
[111] P. Erdős, E. Szemerédi, “On sums and products of integers”, Studies in pure mathematics, ed. P. Erdős, Birkhäuser, Basel, 1983, 213–218 | MR | Zbl
[112] G. Elekes, “On the number of sums and products”, Acta Arith., 81:4 (1997), 365–367 | MR | Zbl
[113] J. Solymosi, “Bounding multiplicative energy by the sumset”, Adv. Math., 222:2 (2009), 402–408 | DOI | MR | Zbl
[114] J. Bourgain, A. A. Glibichuk, S. V. Konyagin, “Estimate for the number of sums and products and for exponential sums in fields of prime order”, J. Lond. Math. Soc. (2), 73:2 (2006), 380–398 | DOI | MR | Zbl
[115] B. Green, Sum-product phenomena in $\mathbb{F}_p$: a brief introduction, 2009, 10 pp., arXiv: 0904.2075v1
[116] A. A. Glibichuk, “Average estimate for additive energy in prime field”, Mosc. J. Comb. Number Theory, 1:3 (2011), 50–68 | MR | Zbl
[117] I. D. Shkredov, “On Heilbronn's exponential sum”, Q. J. Math., 64:4 (2013), 1221–1230 | DOI | MR | Zbl
[118] I. D. Shkredov, “Some new inequalities in additive combinatorics”, Mosc. J. Comb. Number Theory, 3:3-4 (2013), 189–239 | Zbl
[119] I. D. Shkredov, “On exponential sums over multiplicative subgroups of medium size”, Finite Fields Appl., 30 (2014), 72–87 | DOI | MR | Zbl
[120] D. R. Heath-Brown, S. Konyagin, “New bounds for Gauss sums derived from $k$th powers, and for Heilbronn's exponential sum”, Q. J. Math., 51:2 (2000), 221–235 | DOI | MR | Zbl
[121] S. V. Konyagin, “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”. Aktualnye problemy, Ch. 3 (Tula, 2001), MGU, M., 2002, 86–114 | MR | Zbl
[122] D. R. Heath-Brown, “An estimate for Heilbronn's exponential sum”, Analytic number theory (Allerton Park, IL, 1995), v. 2, Progr. Math., 139, Birkhäuser Boston, Boston, MA, 1996, 451–463 | MR | Zbl
[123] J. Bourgain, K. Ford, S. V. Konyagin, I. E. Shparlinski, “On the divisibility of Fermat quotients”, Michigan Math. J., 59:2 (2010), 313–328 | DOI | MR | Zbl
[124] B. Host, B. R. Kra, “Nonconventional ergodic averages and nilmanifolds”, Ann. of Math. (2), 161:1 (2005), 397–488 | DOI | MR | Zbl
[125] B. Host, B. Kra, “Convergence of polynomial ergodic averages”, Israel J. Math., 149:1 (2005), 1–19 | DOI | MR | Zbl
[126] T. Tao, “A quantitative ergodic theory proof of Szemerédi's theorem”, Electron. J. Combin., 13:1 (2006), R99, 49 pp. | MR | Zbl
[127] T. Tao, “Norm convergence of multiple ergodic averages for commuting transformations”, Ergodic Theory Dynam. Systems, 28:2 (2008), 657–688 | DOI | MR | Zbl
[128] T. Tao, T. Ziegler, “The inverse conjecture for the Gowers norm over finite fields via the correspondence principle”, Anal. PDE, 3:1 (2010), 1–20 | DOI | MR | Zbl
[129] T. Ziegler, “A non-conventional ergodic theorem for a nilsystem”, Ergodic Theory Dynam. Systems, 25:4 (2005), 1357–1370 | DOI | MR | Zbl
[130] T. Ziegler, “Universal characteristic factors and Furstenberg averages”, J. Amer. Math. Soc., 20:1 (2007), 53–97 (electronic) | DOI | MR | Zbl
[131] K. F. Roth, “On certain sets of integers”, J. London Math. Soc., 28 (1953), 104–109 | DOI | MR | Zbl
[132] E. Szemerédi, “Regular partitions of graphs”, Problèmes combinatoires et théorie des graphes (Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, 260, CNRS, Paris, 1978, 399–401 | MR | Zbl
[133] A. Sárközy, “On additive decompositions of the set of quadratic residues modulo $p$”, Acta Arith., 155 (2012), 41–51 | DOI | MR | Zbl
[134] C. Dartyge, A. Sárközy, “On additive decompositions of the set of primitive roots modulo $p$”, Monatsh. Math., 169:3-4 (2013), 317–328 | DOI | MR | Zbl
[135] N. H. Katz, P. Koester, “On additive doubling and energy”, SIAM J. Discrete Math., 24:4 (2010), 1684–1693 | DOI | MR | Zbl
[136] P. Erdös, P. Turán, “On some sequences of integers”, J. London Math. Soc., 11:4 (1936), 261–264 | DOI | MR | Zbl
[137] B. L. van der Waerden, “Beweis einer Baudetschen Vermutung”, Nieuw Arch. Wisk., 15 (1927), 212–216 | Zbl
[138] E. Szemerédi, “Integer sets containing no arithmetic progressions”, Acta Math. Hungar., 56:1-2 (1990), 155–158 | DOI | MR | Zbl
[139] D. R. Heath-Brown, “Integer sets containing no arithmetic progressions”, J. London Math. Soc. (2), 35:3 (1987), 385–394 | DOI | MR | Zbl
[140] R. Meshulam, “On subsets of finite abelian groups with no 3-term arithmetic progressions”, J. Combin. Theory Ser. A, 71:1 (1995), 168–172 | DOI | MR | Zbl
[141] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, M. B. Porter Lectures, Princeton Univ. Press, Princeton, N.J., 1981, xi+203 pp. | MR | Zbl
[142] T. Austin, “On the norm convergence of non-conventional ergodic averages”, Ergodic Theory Dynam. Systems, 30:2 (2010), 321–338 ; (2008 (v3 – 2009)), 19 pp., arXiv: 0805.0320v1 | DOI | MR | Zbl
[143] W. T. Gowers, “Hypergraph regularity and the multidimensional Szemerédi theorem”, Ann. of Math. (2), 166:3 (2007), 897–946 | DOI | MR | Zbl
[144] B. Nagle, V. Rödl, M. Schacht, “The counting lemma for regular $k$-uniform hypergraphs”, Random Structures Algorithms, 28:2 (2006), 113–179 | DOI | MR | Zbl
[145] V. Rödl, J. Skokan, “Regularity lemma for $k$-uniform hypergraphs”, Random Structures Algorithms, 25:1 (2004), 1–42 | DOI | MR | Zbl
[146] T. Tao, “A variant of the hypergraph removal lemma”, J. Combin. Theory Ser. A, 113:7 (2006), 1257–1280 | DOI | MR | Zbl
[147] T. Sanders, “Green's sumset problem at density one half”, Acta Arith., 146:1 (2011), 91–101 | DOI | MR | Zbl
[148] R. Grekhem, Nachala teorii Ramseya, Mir, M., 1984, 97 pp. ; R. L. Graham, Rudiments of Ramsey theory, CBMS Reg. Conf. Ser. Math., 45, Amer. Math. Soc., 1981, v+65 pp. | MR | Zbl | DOI | MR | Zbl
[149] J. Bourgain, “More on the sum-product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl