@article{RM_2015_70_1_a2,
author = {V. I. Chernousov and A. S. Rapinchuk and I. A. Rapinchuk},
title = {Division algebras with the same maximal subfields},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {83--112},
year = {2015},
volume = {70},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_1_a2/}
}
TY - JOUR AU - V. I. Chernousov AU - A. S. Rapinchuk AU - I. A. Rapinchuk TI - Division algebras with the same maximal subfields JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2015 SP - 83 EP - 112 VL - 70 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2015_70_1_a2/ LA - en ID - RM_2015_70_1_a2 ER -
V. I. Chernousov; A. S. Rapinchuk; I. A. Rapinchuk. Division algebras with the same maximal subfields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 1, pp. 83-112. http://geodesic.mathdoc.fr/item/RM_2015_70_1_a2/
[2] S. A. Amitsur, “Generic splitting fields of central simple algebras”, Ann. of Math. (2), 62:1 (1955), 8–43 | DOI | MR | Zbl
[3] J. W. S. Cassels, A. Fröhlich (eds.), Algebraic number theory, Proceedings of the instructional conference (Univ. of Sussex, Brighton, September 1–17, 1965), 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 2010, xviii+366 pp. | MR | MR | Zbl
[4] V. Chernousov, V. Guletskiĭ, “2-torsion of the Brauer group of an elliptic curve: generators and relations”, Proceedings of the conference on quadratic forms and related topics (Baton Rouge, LA, 2001), Doc. Math., 2001, Extra vol., 85–120 (electronic) | MR | Zbl
[5] V. I. Chernousov, A. S. Rapinchuk, I. A. Rapinchuk, “On the genus of a division algebra”, C. R. Math. Acad. Sci. Paris, 350:17-18 (2012), 807–812 | DOI | MR | Zbl
[6] V. I. Chernousov, A. S. Rapinchuk, I. A. Rapinchuk, “The genus of a division algebra and the unramified Brauer group”, Bull. Math. Sci., 3:2 (2013), 211–240 | DOI | MR | Zbl
[7] V. I. Chernousov, A. S. Rapinchuk, I. A. Rapinchuk, “Estimating the size of the genus of a division algebra”, in preparation
[8] V. I. Chernousov, A. S. Rapinchuk, I. A. Rapinchuk, “On algebraic groups having the same maximal tori”, in preparation
[9] J.-L. Colliot-Thélène, “Birational invariants, purity, and the Gersten conjecture”, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., 58, Part 1, Amer. Math. Soc., Providence, RI, 1995, 1–64 | DOI | MR | Zbl
[10] J.-L. Colliot-Thélène, “Groupe de Chow des zéro-cycles sur les variétés $p$-adiques (d'après S. Saito, K. Sato et al.)”, Séminaire Bourbaki, v. 2009/2010, Exp. No 1012, Astérisque, 339, Soc. Math. France, Paris, 2011, vii+30 pp. | MR | Zbl
[11] J.-L. Colliot-Thélène, S. Saito, “Zéro-cycles sur les variétés $p$-adiques et groupe de Brauer”, Internat. Math. Res. Notices, 1996, no. 4, 151–160 | DOI | MR | Zbl
[12] B. Conrad, “Reductive group schemes”, Autour des schémas en groupes, École d'été “Schémas en groupes” [Group Schemes, A celebration of SGA3] (Luminy, 2011), v. I, Panoramas et Synthèses, 42-43, Soc. Math. France, Paris, 2014 {9pt}\selectfont http://smf4.emath.fr/en/Publications/PanoramasSyntheses/2014/42-43/html/smf_panosynth_42-43.php} \fontsize{6
[13] B. Conrad, “Non-split reductive groups over $\mathbb{Z}$”, Autour des schémas en groupes, École d'été “Schémas en groupes” [Group Schemes, A celebration of SGA3] (Luminy, 2011), v. II, Panoramas et Synthèses, Soc. Math. France, Paris (to appear); 2014, 67 pp. {9pt}\selectfont math.stanford.edu/~conrad/papers/redgpZ.pdf} \fontsize{8
[14] P. Deligne, Cohomologie étale, Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac{1}{2}$. Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie, J. L. Verdier, Lecture Notes in Math., 569, Springer-Verlag, Berlin–New York, 1977, iv+312 pp. | DOI | MR | Zbl
[15] M. Demazure, A. Grothendieck (eds.), Schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure, A. Grothendieck, v. III, Lecture Notes in Math., 153, Structure des schémas en groupes réductifs, Springer-Verlag, Berlin–Heidelberg–New York, 1970, viii+529 pp. | DOI | MR | Zbl
[16] B. Farb, R. K. Dennis, Noncommutative algebra, Grad. Texts in Math., 144, Springer-Verlag, New York, 1993, xiv+223 pp. | DOI | MR | Zbl
[17] J.-M. Fontaine, “Il n'y a pas de variété abélienne sur $\mathbb{Z}$”, Invent. Math., 81:3 (1985), 515–538 | DOI | MR | Zbl
[18] O. Forster, Lectures on Riemann surfaces, Grad. Texts in Math., 81, Springer-Verlag, New York–Berlin, 1981, viii+254 pp. | DOI | MR | Zbl
[19] K. Fujiwara, “A proof of the absolute purity conjecture (after Gabber)”, Algebraic geometry 2000 (Azumino (Hotaka)), Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo, 2002, 153–183 | MR | Zbl
[20] S. Garibaldi, A. S. Rapinchuk, “Weakly commensurable $S$-arithmetic subgroups in almost simple algebraic groups of types $\mathbf{B}$ and $\mathbf{C}$”, Algebra Number Theory, 7:5 (2013), 1147–1178 | DOI | MR | Zbl
[21] S. Garibaldi, D. Saltman, “Quaternion algebras with the same subfields”, Quadratic forms, linear algebraic groups, and cohomology, Dev. Math., 18, Springer, New York, 2010, 225–238 | DOI | MR | Zbl
[22] P. Gille, T. Szamuely, Central simple algebras and Galois cohomology, Cambridge Stud. Adv. Math., 101, Cambridge Univ. Press, Cambridge, 2006, xii+343 pp. | DOI | MR | Zbl
[23] B. H. Gross, “Groups over $\mathbb{Z}$”, Invent. Math., 124:1-3 (1996), 263–279 | DOI | MR | Zbl
[24] O. T. Izhboldin, “Motivic equivalence of quadratic forms”, Doc. Math., 3 (1998), 341–351 (electronic) | MR | Zbl
[25] M. Kac, “Can one hear the shape of a drum?”, Amer. Math. Monthly, 73:4, Part 2 (1966), 1–23 | DOI | MR | Zbl
[26] N. A. Karpenko, “Criteria of motivic equivalence for quadratic forms and central simple agebras”, Math. Ann., 317:3 (2000), 585–611 | DOI | MR | Zbl
[27] D. Krashen, E. Matzri, A. S. Rapinchuk, L. Rowen, D. Saltman, “Division algebras with common subfields”, in preparation
[28] D. Krashen, K. McKinnie, “Distinguishing division algebras by finite splitting fields”, Manuscripta Math., 134:1-2 (2011), 171–182 | DOI | MR | Zbl
[29] S. Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983, xviii+370 pp. | DOI | MR | MR | Zbl | Zbl
[30] S. Lichtenbaum, “Duality theorems for curves over $p$-adic fields”, Invent. Math., 7:2 (1969), 120–136 | DOI | MR | Zbl
[31] B. Linowitz, D. B. McReynolds, P. Pollack, L. Thompson, Counting and effective rigidity in algebra and geometry, 2014, 57 pp., arXiv: 1407.2294
[32] C. Maclachlan, A. W. Reid, The arithmetic of hyperbolic 3-manifolds, Grad. Texts in Math., 219, Springer-Verlag, New York, 2003, xiv+463 pp. | DOI | MR | Zbl
[33] J. S. Meyer, “Division algebras with infinite genus”, Bull. Lond. Math. Soc., 46:3 (2014), 463–468 | DOI | MR | Zbl
[34] J. S. Milne, Class field theory, 2013, 281 \par pp. www.jmilne.org/math/CourseNotes/cft.html
[35] R. S. Pierce, Associative algebras, Grad. Texts in Math., 88, Stud. Hist. Modern Sci., 9, Springer-Verlag, New York–Berlin, 1982, xii+436 pp. | DOI | MR | MR | Zbl | Zbl
[36] V. P. Platonov, A. S. Rapinchuk, Algebraic groups and number theory, Pure Appl. Math., 139, Academic Press, Inc., Boston, MA, 1994, xii+614 pp. | MR | MR | Zbl | Zbl
[37] G. Prasad, A. S. Rapinchuk, “Weakly commensurable arithmetic groups and isospectral locally symmetric spaces”, Publ. Math. Inst. Hautes Études Sci., 109 (2009), 113–184 | DOI | MR | Zbl
[38] G. Prasad, A. S. Rapinchuk, “On the fields generated by the lengths of closed geodesics in locally symmetric spaces”, Geom. Dedicata, 172 (2014), 79–120 | DOI | MR | Zbl
[39] G. Prasad, A. S. Rapinchuk, “Generic elements in Zariski-dense subgroups and isospectral locally symmetric spaces”, Thin groups and superstrong approximation, Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press, Cambridge, 2014, 211–252 | MR | Zbl
[40] A. S. Rapinchuk, “Towards the eigenvalue rigidity of Zariski-dense subgroups”, Proceedings of the International Congress of Mathematicians (Seoul, 2014), 247–269
[41] A. S. Rapinchuk, I. A. Rapinchuk, “On division algebras having the same maximal subfields”, Manuscripta Math., 132:3-4 (2010), 273–293 | DOI | MR | Zbl
[42] A. Reid, “Isospectrality and commensurability of arithmetic hyprebolic 2- and 3-manifolds”, Duke Math. J., 65:2 (1992), 215–228 | DOI | MR | Zbl
[43] P. Roquette, The Brauer–Hasse–Noether theorem in historical perspective, Schriften der Mathematisch-naturwissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften, 15, Springer-Verlag, Berlin, 2005, vi+92 pp. | DOI | MR | Zbl
[44] D. J. Saltman, Lectures on division algebras, CBMS Regional Conf. Ser. in Math., 94, Amer. Math. Soc., Providence, RI; Conference Board of the Mathematical Sciences, Washington, DC, 1999, viii+120 pp. | DOI | MR | Zbl
[45] J.-P. Serre, Local fields, Grad. Texts in Math., 67, Springer-Verlag, New York–Berlin, 1979, viii+241 pp. | DOI | MR | Zbl
[46] Zh. P. Serr, Kogomologii Galua, Mir, M., 1968, 208 pp. ; J.-P. Serre, Cohomologie galoisienne, Cours au Collège de France, 1962–1963, Lecture Notes in Math., 5, 2-ème éd., Springer-Verlag, Berlin–Heidelberg–New York, 1964, vii+212 pp. ; J.-P. Serre, Galois cohomology, Springer Monogr. Math., Springer-Verlag, Berlin, 1997, x+210 СЃ. | MR | Zbl | MR | Zbl | DOI | MR | Zbl
[47] J. H. Silverman, The arithmetic of elliptic curves, Grad. Texts in Math., 106, 2nd ed., Springer, Dordrecht, 2009, xx+513 pp. | DOI | MR | Zbl
[48] S. V. Tikhonov, Division algebras of prime degree with infinite genus, 2014, 4 pp., arXiv: 1407.5041
[49] E. B. Vinberg, Some examples of Fuchsian groups sitting in $SL_2(\mathbb{Q})$, preprint No 12011 of the SFB-701, Universität Bielefeld, Bielefeld, 2012, 4 pp. {9pt} http://www.math.uni-bielefeld.de/sfb701/files/preprints/sfb12011.pdf} \fontsize{8
[50] A. Vishik, Integral motives of quadrics, preprint MPI-1998-13, Max Planck Institute für Mathematik, Bonn, 1998, 82 pp. http://www.mpim-bonn.mpg.de/node/263
[51] A. Vishik, “Motives of quadrics with applications to the theory of quadratic forms”, Geometric methods in the algebraic theory of quadratic forms, Lecture Notes in Math., 1835, Springer, Berlin, 2004, 25–101 | DOI | MR | Zbl
[52] A. R. Wadsworth, “Valuation theory on finite dimensional division algebras”, Valuation theory and its applications (Saskatoon, SK, 1999), v. I, Fields Inst. Commun., 32, Amer. Math. Soc., Providence, RI, 2002, 385–449 | MR | Zbl