Division algebras with the same maximal subfields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 1, pp. 83-112
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey of recent results related to the problem of characterizing finite-dimensional division algebras by the set of isomorphism classes of their maximal subfields. Also discussed are various generalizations of this problem and some of its applications. In the last section the problem is extended to the context of absolutely almost simple algebraic groups. Bibliography: 51 titles.
Keywords: division algebra, unramified Brauer group, semisimple algebraic groups.
@article{RM_2015_70_1_a2,
     author = {V. I. Chernousov and A. S. Rapinchuk and I. A. Rapinchuk},
     title = {Division algebras with the same maximal subfields},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {83--112},
     year = {2015},
     volume = {70},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_1_a2/}
}
TY  - JOUR
AU  - V. I. Chernousov
AU  - A. S. Rapinchuk
AU  - I. A. Rapinchuk
TI  - Division algebras with the same maximal subfields
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 83
EP  - 112
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_1_a2/
LA  - en
ID  - RM_2015_70_1_a2
ER  - 
%0 Journal Article
%A V. I. Chernousov
%A A. S. Rapinchuk
%A I. A. Rapinchuk
%T Division algebras with the same maximal subfields
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 83-112
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2015_70_1_a2/
%G en
%F RM_2015_70_1_a2
V. I. Chernousov; A. S. Rapinchuk; I. A. Rapinchuk. Division algebras with the same maximal subfields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 1, pp. 83-112. http://geodesic.mathdoc.fr/item/RM_2015_70_1_a2/

[2] S. A. Amitsur, “Generic splitting fields of central simple algebras”, Ann. of Math. (2), 62:1 (1955), 8–43 | DOI | MR | Zbl

[3] J. W. S. Cassels, A. Fröhlich (eds.), Algebraic number theory, Proceedings of the instructional conference (Univ. of Sussex, Brighton, September 1–17, 1965), 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 2010, xviii+366 pp. | MR | MR | Zbl

[4] V. Chernousov, V. Guletskiĭ, “2-torsion of the Brauer group of an elliptic curve: generators and relations”, Proceedings of the conference on quadratic forms and related topics (Baton Rouge, LA, 2001), Doc. Math., 2001, Extra vol., 85–120 (electronic) | MR | Zbl

[5] V. I. Chernousov, A. S. Rapinchuk, I. A. Rapinchuk, “On the genus of a division algebra”, C. R. Math. Acad. Sci. Paris, 350:17-18 (2012), 807–812 | DOI | MR | Zbl

[6] V. I. Chernousov, A. S. Rapinchuk, I. A. Rapinchuk, “The genus of a division algebra and the unramified Brauer group”, Bull. Math. Sci., 3:2 (2013), 211–240 | DOI | MR | Zbl

[7] V. I. Chernousov, A. S. Rapinchuk, I. A. Rapinchuk, “Estimating the size of the genus of a division algebra”, in preparation

[8] V. I. Chernousov, A. S. Rapinchuk, I. A. Rapinchuk, “On algebraic groups having the same maximal tori”, in preparation

[9] J.-L. Colliot-Thélène, “Birational invariants, purity, and the Gersten conjecture”, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., 58, Part 1, Amer. Math. Soc., Providence, RI, 1995, 1–64 | DOI | MR | Zbl

[10] J.-L. Colliot-Thélène, “Groupe de Chow des zéro-cycles sur les variétés $p$-adiques (d'après S. Saito, K. Sato et al.)”, Séminaire Bourbaki, v. 2009/2010, Exp. No 1012, Astérisque, 339, Soc. Math. France, Paris, 2011, vii+30 pp. | MR | Zbl

[11] J.-L. Colliot-Thélène, S. Saito, “Zéro-cycles sur les variétés $p$-adiques et groupe de Brauer”, Internat. Math. Res. Notices, 1996, no. 4, 151–160 | DOI | MR | Zbl

[12] B. Conrad, “Reductive group schemes”, Autour des schémas en groupes, École d'été “Schémas en groupes” [Group Schemes, A celebration of SGA3] (Luminy, 2011), v. I, Panoramas et Synthèses, 42-43, Soc. Math. France, Paris, 2014 {9pt}\selectfont http://smf4.emath.fr/en/Publications/PanoramasSyntheses/2014/42-43/html/smf_panosynth_42-43.php} \fontsize{6

[13] B. Conrad, “Non-split reductive groups over $\mathbb{Z}$”, Autour des schémas en groupes, École d'été “Schémas en groupes” [Group Schemes, A celebration of SGA3] (Luminy, 2011), v. II, Panoramas et Synthèses, Soc. Math. France, Paris (to appear); 2014, 67 pp. {9pt}\selectfont math.stanford.edu/~conrad/papers/redgpZ.pdf} \fontsize{8

[14] P. Deligne, Cohomologie étale, Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac{1}{2}$. Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie, J. L. Verdier, Lecture Notes in Math., 569, Springer-Verlag, Berlin–New York, 1977, iv+312 pp. | DOI | MR | Zbl

[15] M. Demazure, A. Grothendieck (eds.), Schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure, A. Grothendieck, v. III, Lecture Notes in Math., 153, Structure des schémas en groupes réductifs, Springer-Verlag, Berlin–Heidelberg–New York, 1970, viii+529 pp. | DOI | MR | Zbl

[16] B. Farb, R. K. Dennis, Noncommutative algebra, Grad. Texts in Math., 144, Springer-Verlag, New York, 1993, xiv+223 pp. | DOI | MR | Zbl

[17] J.-M. Fontaine, “Il n'y a pas de variété abélienne sur $\mathbb{Z}$”, Invent. Math., 81:3 (1985), 515–538 | DOI | MR | Zbl

[18] O. Forster, Lectures on Riemann surfaces, Grad. Texts in Math., 81, Springer-Verlag, New York–Berlin, 1981, viii+254 pp. | DOI | MR | Zbl

[19] K. Fujiwara, “A proof of the absolute purity conjecture (after Gabber)”, Algebraic geometry 2000 (Azumino (Hotaka)), Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo, 2002, 153–183 | MR | Zbl

[20] S. Garibaldi, A. S. Rapinchuk, “Weakly commensurable $S$-arithmetic subgroups in almost simple algebraic groups of types $\mathbf{B}$ and $\mathbf{C}$”, Algebra Number Theory, 7:5 (2013), 1147–1178 | DOI | MR | Zbl

[21] S. Garibaldi, D. Saltman, “Quaternion algebras with the same subfields”, Quadratic forms, linear algebraic groups, and cohomology, Dev. Math., 18, Springer, New York, 2010, 225–238 | DOI | MR | Zbl

[22] P. Gille, T. Szamuely, Central simple algebras and Galois cohomology, Cambridge Stud. Adv. Math., 101, Cambridge Univ. Press, Cambridge, 2006, xii+343 pp. | DOI | MR | Zbl

[23] B. H. Gross, “Groups over $\mathbb{Z}$”, Invent. Math., 124:1-3 (1996), 263–279 | DOI | MR | Zbl

[24] O. T. Izhboldin, “Motivic equivalence of quadratic forms”, Doc. Math., 3 (1998), 341–351 (electronic) | MR | Zbl

[25] M. Kac, “Can one hear the shape of a drum?”, Amer. Math. Monthly, 73:4, Part 2 (1966), 1–23 | DOI | MR | Zbl

[26] N. A. Karpenko, “Criteria of motivic equivalence for quadratic forms and central simple agebras”, Math. Ann., 317:3 (2000), 585–611 | DOI | MR | Zbl

[27] D. Krashen, E. Matzri, A. S. Rapinchuk, L. Rowen, D. Saltman, “Division algebras with common subfields”, in preparation

[28] D. Krashen, K. McKinnie, “Distinguishing division algebras by finite splitting fields”, Manuscripta Math., 134:1-2 (2011), 171–182 | DOI | MR | Zbl

[29] S. Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983, xviii+370 pp. | DOI | MR | MR | Zbl | Zbl

[30] S. Lichtenbaum, “Duality theorems for curves over $p$-adic fields”, Invent. Math., 7:2 (1969), 120–136 | DOI | MR | Zbl

[31] B. Linowitz, D. B. McReynolds, P. Pollack, L. Thompson, Counting and effective rigidity in algebra and geometry, 2014, 57 pp., arXiv: 1407.2294

[32] C. Maclachlan, A. W. Reid, The arithmetic of hyperbolic 3-manifolds, Grad. Texts in Math., 219, Springer-Verlag, New York, 2003, xiv+463 pp. | DOI | MR | Zbl

[33] J. S. Meyer, “Division algebras with infinite genus”, Bull. Lond. Math. Soc., 46:3 (2014), 463–468 | DOI | MR | Zbl

[34] J. S. Milne, Class field theory, 2013, 281 \par pp. www.jmilne.org/math/CourseNotes/cft.html

[35] R. S. Pierce, Associative algebras, Grad. Texts in Math., 88, Stud. Hist. Modern Sci., 9, Springer-Verlag, New York–Berlin, 1982, xii+436 pp. | DOI | MR | MR | Zbl | Zbl

[36] V. P. Platonov, A. S. Rapinchuk, Algebraic groups and number theory, Pure Appl. Math., 139, Academic Press, Inc., Boston, MA, 1994, xii+614 pp. | MR | MR | Zbl | Zbl

[37] G. Prasad, A. S. Rapinchuk, “Weakly commensurable arithmetic groups and isospectral locally symmetric spaces”, Publ. Math. Inst. Hautes Études Sci., 109 (2009), 113–184 | DOI | MR | Zbl

[38] G. Prasad, A. S. Rapinchuk, “On the fields generated by the lengths of closed geodesics in locally symmetric spaces”, Geom. Dedicata, 172 (2014), 79–120 | DOI | MR | Zbl

[39] G. Prasad, A. S. Rapinchuk, “Generic elements in Zariski-dense subgroups and isospectral locally symmetric spaces”, Thin groups and superstrong approximation, Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press, Cambridge, 2014, 211–252 | MR | Zbl

[40] A. S. Rapinchuk, “Towards the eigenvalue rigidity of Zariski-dense subgroups”, Proceedings of the International Congress of Mathematicians (Seoul, 2014), 247–269

[41] A. S. Rapinchuk, I. A. Rapinchuk, “On division algebras having the same maximal subfields”, Manuscripta Math., 132:3-4 (2010), 273–293 | DOI | MR | Zbl

[42] A. Reid, “Isospectrality and commensurability of arithmetic hyprebolic 2- and 3-manifolds”, Duke Math. J., 65:2 (1992), 215–228 | DOI | MR | Zbl

[43] P. Roquette, The Brauer–Hasse–Noether theorem in historical perspective, Schriften der Mathematisch-naturwissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften, 15, Springer-Verlag, Berlin, 2005, vi+92 pp. | DOI | MR | Zbl

[44] D. J. Saltman, Lectures on division algebras, CBMS Regional Conf. Ser. in Math., 94, Amer. Math. Soc., Providence, RI; Conference Board of the Mathematical Sciences, Washington, DC, 1999, viii+120 pp. | DOI | MR | Zbl

[45] J.-P. Serre, Local fields, Grad. Texts in Math., 67, Springer-Verlag, New York–Berlin, 1979, viii+241 pp. | DOI | MR | Zbl

[46] Zh. P. Serr, Kogomologii Galua, Mir, M., 1968, 208 pp. ; J.-P. Serre, Cohomologie galoisienne, Cours au Collège de France, 1962–1963, Lecture Notes in Math., 5, 2-ème éd., Springer-Verlag, Berlin–Heidelberg–New York, 1964, vii+212 pp. ; J.-P. Serre, Galois cohomology, Springer Monogr. Math., Springer-Verlag, Berlin, 1997, x+210 СЃ. | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[47] J. H. Silverman, The arithmetic of elliptic curves, Grad. Texts in Math., 106, 2nd ed., Springer, Dordrecht, 2009, xx+513 pp. | DOI | MR | Zbl

[48] S. V. Tikhonov, Division algebras of prime degree with infinite genus, 2014, 4 pp., arXiv: 1407.5041

[49] E. B. Vinberg, Some examples of Fuchsian groups sitting in $SL_2(\mathbb{Q})$, preprint No 12011 of the SFB-701, Universität Bielefeld, Bielefeld, 2012, 4 pp. {9pt} http://www.math.uni-bielefeld.de/sfb701/files/preprints/sfb12011.pdf} \fontsize{8

[50] A. Vishik, Integral motives of quadrics, preprint MPI-1998-13, Max Planck Institute für Mathematik, Bonn, 1998, 82 pp. http://www.mpim-bonn.mpg.de/node/263

[51] A. Vishik, “Motives of quadrics with applications to the theory of quadratic forms”, Geometric methods in the algebraic theory of quadratic forms, Lecture Notes in Math., 1835, Springer, Berlin, 2004, 25–101 | DOI | MR | Zbl

[52] A. R. Wadsworth, “Valuation theory on finite dimensional division algebras”, Valuation theory and its applications (Saskatoon, SK, 1999), v. I, Fields Inst. Commun., 32, Amer. Math. Soc., Providence, RI, 2002, 385–449 | MR | Zbl