Random graphs: models and asymptotic characteristics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 1, pp. 33-81
Voir la notice de l'article provenant de la source Math-Net.Ru
This is a survey of known results related to the asymptotic behaviour of the probabilities of first-order properties of random graphs. The results presented in this paper are concerned with zero-one laws for properties of random graphs. Emphasis is placed on the Erdős–Rényi model of a random graph. Also considered are some generalizations of this model motivated by various problems in the theory of coding and combinatorial geometry.
Bibliography: 65 titles.
Keywords:
random graphs, distance graphs, limit theorems, zero-one laws, first-order properties.
@article{RM_2015_70_1_a1,
author = {M. E. Zhukovskii and A. M. Raigorodskii},
title = {Random graphs: models and asymptotic characteristics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {33--81},
publisher = {mathdoc},
volume = {70},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_1_a1/}
}
TY - JOUR AU - M. E. Zhukovskii AU - A. M. Raigorodskii TI - Random graphs: models and asymptotic characteristics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2015 SP - 33 EP - 81 VL - 70 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2015_70_1_a1/ LA - en ID - RM_2015_70_1_a1 ER -
M. E. Zhukovskii; A. M. Raigorodskii. Random graphs: models and asymptotic characteristics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 1, pp. 33-81. http://geodesic.mathdoc.fr/item/RM_2015_70_1_a1/