Pseudo-integrable billiards and double reflection nets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 1, pp. 1-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey of two recently emerged directions in the study of billiards inside pencils of quadrics: pseudo-integrable billiards in the plane and double reflection nets. Bibliography: 48 titles.
Keywords: elliptical billiards, periodic trajectories, double reflection configuration, discrete integrable systems, line congruences, pseudo-integrability.
Mots-clés : polygonal billiards
@article{RM_2015_70_1_a0,
     author = {V. I. Dragovi\'c and M. Radnovi\'c},
     title = {Pseudo-integrable billiards and double reflection nets},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--31},
     year = {2015},
     volume = {70},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_1_a0/}
}
TY  - JOUR
AU  - V. I. Dragović
AU  - M. Radnović
TI  - Pseudo-integrable billiards and double reflection nets
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 1
EP  - 31
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_1_a0/
LA  - en
ID  - RM_2015_70_1_a0
ER  - 
%0 Journal Article
%A V. I. Dragović
%A M. Radnović
%T Pseudo-integrable billiards and double reflection nets
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 1-31
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2015_70_1_a0/
%G en
%F RM_2015_70_1_a0
V. I. Dragović; M. Radnović. Pseudo-integrable billiards and double reflection nets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 1, pp. 1-31. http://geodesic.mathdoc.fr/item/RM_2015_70_1_a0/

[1] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings”, Comm. Anal. Geom., 12:5 (2004), 967–1007 | DOI | MR | Zbl

[2] V. E. Adler, A. I. Bobenko, Y. B. Suris, “Integrable discrete nets in Grassmannians”, Lett. Math. Phys., 89:2 (2009), 131–139 | DOI | MR | Zbl

[3] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974, 431 pp. ; V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York, 1978, xvi+462 pp. | MR | Zbl | DOI | MR | Zbl

[4] V. I. Arnold, “Poliintegriruemye potoki”, Algebra i analiz, 4:6 (1992), 54–62 ; V. I. Arnol'd, “Poly-integrable flows”, St. Petersburg Math. J., 4:6 (1993), 1103–1110 | MR | Zbl

[5] J. S. Athreya, A. Eskin, A. Zorich, “Right-angled billiards and volumes of moduli spaces of quadratic differentials on $\mathbb{C}P^1$”, 2012 (v3 – 2013), 61 pp., arXiv: 1212.1660

[6] M. Berger, Geometry. I, Universitext, Springer-Verlag, Berlin, 1987, xiv+428 pp. | DOI | MR | Zbl

[7] M. Berger, Geometry. II, Universitext, Springer-Verlag, Berlin, 1987, x+406 pp. | DOI | MR | Zbl

[8] A. I. Bobenko, Y. B. Suris, Discrete differential geometry. Integrable structure, Grad. Stud. Math., 98, Amer. Math. Soc., Providence, RI, 2008, xxiv+404 pp. | DOI | MR | Zbl

[9] P. S. Casas, R. Ramírez-Ros, “The frequency map for billiards inside ellipsoids”, SIAM J. Appl. Dyn. Syst., 10:1 (2011), 278–324 | DOI | MR | Zbl

[10] S.-J. Chang, B. Crespi, K.-J. Shi, “Elliptical billiard systems and the full Poncelet's theorem in $n$ dimensions”, J. Math. Phys., 34:6 (1993), 2242–2256 | DOI | MR | Zbl

[11] M. Chasles, “Géométrie pure. Théorèmes sur les sections coniques confocales”, Ann. Math. Pures Appl. [Ann. Gergonne], 18 (1827/1828), 269–276 | MR

[12] G. Darboux, “Sur les polygones inscrits et circonscrits à l'ellipsoïde”, Bulletin de la Société philomathique, 7 (1870), 92–94 | Zbl

[13] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. 2, 2-ème éd., Gauthier-Villars, Paris, 1915, xix+567 pp. ; v. 3, 1-ère éd., 1894, xvi+501 pp. | MR | Zbl | MR | Zbl

[14] V. Dragović, M. Radnović, “Cayley-type conditions for billiards within $k$ quadrics in $\mathbb R^d$”, J. Phys. A, 37:4 (2004), 1269–1276 | DOI | MR | Zbl

[15] V. Dragović, M. Radnović, “Geometry of integrable billiards and pencils of quadrics”, J. Math. Pures Appl. (9), 85:6 (2006), 758–790 | DOI | MR | Zbl

[16] V. Dragović, M. Radnović, “Hyperelliptic Jacobians as billiard algebra of pencils of quadrics: beyond Poncelet porisms”, Adv. Math., 219:5 (2008), 1577–1607 | DOI | MR | Zbl

[17] V. Dragovich, M. Radnovich, “Integriruemye billiardy i kvadriki”, UMN, 65:2(392) (2010), 133–194 | DOI | MR | Zbl

[18] V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl

[19] V. Dragović, M. Radnović, “Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics”, Adv. Math., 231:3-4 (2012), 1173–1201 | DOI | MR | Zbl

[20] V. Dragović, M. Radnović, “Billiard algebra, integrable line congruences, and double reflection nets”, J. Nonlinear Math. Phys., 19:3 (2012), 1250019, 18 pp. | DOI | MR | Zbl

[21] V. Dragović, M. Radnović, “Minkowski plane, confocal conics, and billiards”, Publ. Inst. Math. (Beograd) (N. S.), 94:108 (2013), 17–30 | DOI | MR | Zbl

[22] V. Dragović, M. Radnović, “Pseudo-integrable billiards and arithmetic dynamics”, J. Mod. Dyn., 8:1 (2014), 109–132 | DOI | MR | Zbl

[23] V. Dragović, M. Radnović, “Bicentennial of the great Poncelet theorem (1813–2013): current advances”, Bull. Amer. Math. Soc. (N. S.), 51:3 (2014), 373–445 | DOI | MR | Zbl

[24] V. Dragović, M. Radnović, “Periods of pseudo-integrable billiards”, DOI: 10.1007/s40598-014-0004-0, Arnold Math. J., 2015 (to appear) | DOI

[25] P. Ehrenfest, T. Ehrenfest, “Begriffliche Grundlagen der statistischen Auffassung in der Mechanik”, Encykl. Math. Wiss., IV, 2, II, no. 6, B. G. Teubner, Leipzig, 1912, Art. 32, 90 pp. ; P. Ehrenfest, T. Ehrenfest, The conceptual foundations of the statistical approach in mechanics, Dover Publications, Inc., New York, 1990, xiv+114 pp. | Zbl | MR | Zbl

[26] J. Fay, Kernel functions, analytic torsion, and moduli spaces, Mem. Amer. Math. Soc., 96, no. 464, Amer. Math. Soc., Providence, RI, 1992, vi+123 pp. | DOI | MR | Zbl

[27] R. Hartshorne, Foundations of projective geometry, Lecture notes, Harvard University, 1966/1967, W. A. Benjamin, Inc., 1967, vii+167 pp. | MR | Zbl

[28] P. Hubert, S. Lelièvre, S. Troubetzkoy, “The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion”, J. Reine Angew. Math., 656 (2011), 223–244 | DOI | MR | Zbl

[29] C. G. J. Jacobi, Fundamenta nova theoriae functiorum ellipticarum, Sumtibus fratrum Borntraeger, Königsberg, 1829, 189 pp.

[30] C. G. J. Jacobi, Vorlesungen über Dynamic, Gesammelte Werke, Supplementband, G. Reimer, Berlin, 1884, 290 pp. | Zbl

[31] B. Jovanović, V. Jovanović, “Geodesic and billiard flows on quadrics in pseudo-Euclidean spaces: L–A pairs and Chasles theorem”, Int. Math. Res. Not. IMRN (to appear) | DOI

[32] B. Khesin, S. Tabachnikov, “Pseudo-Riemannian geodesics and billiards”, Adv. Math., 221:4 (2009), 1364–1396 | DOI | MR | Zbl

[33] J. L. King, “Three problems in search of a measure”, Amer. Math. Monthly, 101:7 (1994), 609–628 | DOI | MR | Zbl

[34] V. V. Kozlov, “Usloviya ratsionalnosti otnosheniya ellipticheskikh integralov i bolshaya teorema Ponsele”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2003, no. 4, 6–13 | MR | Zbl

[35] V. V. Kozlov, “Dinamicheskie sistemy na tore s mnogoznachnymi integralami”, Dinamicheskie sistemy i optimizatsiya, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Dmitriya Viktorovicha Anosova, Tr. MIAN, 256, Nauka, M., 2007, 201–218 | MR | Zbl

[36] V. V. Kozlov, D. V. Treschëv, Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991, 168 pp. | MR | Zbl

[37] A. Maier, “O traektoriyakh na orientiruemykh poverkhnostyakh”, Matem. sb., 12(54):1 (1943), 71–84 | MR | Zbl

[38] H. Masur, S. Tabachnikov, “Rational billiards and flat structures”, Handbook of dynamical systems, v. 1A, North-Holland, Amsterdam, 2002, 1015–1089 | DOI | MR | Zbl

[39] S. P. Novikov, “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5(227) (1982), 3–49 | MR | Zbl

[40] E. Previato, “Some integrable billiards”, SPT2002: Symmetry and perturbation theory (Cala Gonone), eds. S. Abenda, G. Gaeta, S. Walcher, World Sci. Publ., River Edge, NJ, 2003, 181–195 | DOI | MR

[41] P. J. Richens, M. V. Berry, “Pseudointegrable systems in classical and quantum mechanics”, Phys. D, 2:3 (1981), 495–512 | DOI | MR | Zbl

[42] P. Samuel, Projective geometry, Undergrad. Texts Math., Springer-Verlag, New York, 1988, x+156 pp. | DOI | MR | Zbl

[43] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl

[44] S. Troubetzkoy, “Typical recurrence for the Ehrenfest wind-tree model”, J. Statist. Phys., 141:1 (2010), 60–67 | DOI | MR | Zbl

[45] W. A. Veech, “Strict ergodicity in zero dimensional dynamical systems and the Kronecker–Weyl theorem mod 2”, Trans. Amer. Math. Soc., 140 (1969), 1–33 | DOI | MR | Zbl

[46] M. Viana, Dynamics of interval exchange transformations and Teichmüller flows, Lecture notes, 2008, 227 pp. http://w3.impa.br/~viana/out/ietf.pdf

[47] A. N. Zemlyakov, A. B. Katok, “Topologicheskaya tranzitivnost billiardov v mnogougolnikakh”, Matem. zametki, 18:2 (1975), 291–300 | MR | Zbl

[48] A. Zorich, “Flat surfaces”, Frontiers in number theory, physics and geometry, v. 1, eds. P. Cartier, B. Julia, P. Moussa, P. Vanhove, Springer, Berlin, 2006, 437–583 | DOI | MR | Zbl