The flux problem for the Navier–Stokes equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 1065-1122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey of results on the Leray problem (1933) for the Navier–Stokes equations of an incompressible fluid in a domain with multiple boundary components. Imposed on the boundary of the domain are inhomogeneous boundary conditions which satisfy the necessary requirement of zero total flux. The authors have proved that the problem is solvable in arbitrary bounded planar or axially symmetric domains. The proof uses Bernoulli's law for weak solutions of the Euler equations and a generalization of the Morse–Sard theorem for functions in Sobolev spaces. New a priori bounds for the Dirichlet integral of the velocity vector field in symmetric flows, as well as estimates for the regular component of the velocity in flows with singularities of source/sink type are presented. Bibliography: 60 titles.
Keywords: Navier–Stokes and Euler equations, multiple boundary components, Dirichlet integral, virtual drain, Bernoulli's law, maximum principle.
@article{RM_2014_69_6_a3,
     author = {M. V. Korobkov and K. Pileckas and V. V. Pukhnachov and R. Russo},
     title = {The flux problem for the {Navier{\textendash}Stokes} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1065--1122},
     year = {2014},
     volume = {69},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_6_a3/}
}
TY  - JOUR
AU  - M. V. Korobkov
AU  - K. Pileckas
AU  - V. V. Pukhnachov
AU  - R. Russo
TI  - The flux problem for the Navier–Stokes equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 1065
EP  - 1122
VL  - 69
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_6_a3/
LA  - en
ID  - RM_2014_69_6_a3
ER  - 
%0 Journal Article
%A M. V. Korobkov
%A K. Pileckas
%A V. V. Pukhnachov
%A R. Russo
%T The flux problem for the Navier–Stokes equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 1065-1122
%V 69
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2014_69_6_a3/
%G en
%F RM_2014_69_6_a3
M. V. Korobkov; K. Pileckas; V. V. Pukhnachov; R. Russo. The flux problem for the Navier–Stokes equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 1065-1122. http://geodesic.mathdoc.fr/item/RM_2014_69_6_a3/

[1] J. Leray, “Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique”, J. Math. Pures Appl. (9), 12 (1933), 1–82 | Zbl

[2] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Math. Appl., 2, 2nd English ed., rev. and enlarged, Gordon and Breach Science Publishers, New York–London–Paris, 1969, xviii+224 pp. | MR | MR | Zbl | Zbl

[3] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4:1-6 (1951), 213–231 | DOI | MR | Zbl

[4] V. I. Yudovich, “Eleven great problems of mathematical hydrodynamics”, Mosc. Math. J., 3:2 (2003), 711–737 | MR | Zbl

[5] O. A. Ladyzhenskaya, V. A. Solonnikov, “Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier–Stokes equations”, J. Soviet Math., 10:2 (1978), 257–286 | DOI | MR | Zbl

[6] E. Hopf, “Ein allgemeiner Endlichkeitssatz der Hydrodynamik”, Math. Ann., 117:1 (1941), 764–775 | DOI | MR | Zbl

[7] H. Fujita, “On the existence and regularity of the steady-state solutions of the Navier–Stokes equation”, J. Fac. Sci. Univ. Tokyo Sect. 1, 9 (1961), 59–102 | MR | Zbl

[8] R. Finn, “On the steady-state solutions of the Navier–Stokes equations. III”, Acta Math., 105:3-4 (1961), 197–244 | DOI | MR | Zbl

[9] G. P. Galdi, “On the existence of steady motions of a viscous flow with non-homogeneous boundary conditions”, Matematiche (Catania), 46:1 (1991), 503–524 | MR | Zbl

[10] L. I. Sazonov, “On the existence of a stationary symmetric solution of the two-dimensional fluid flow problem”, Math. Notes, 54:6 (1993), 1280–1283 | DOI | MR | Zbl

[11] W. Borchers, K. Pileckas, “Note on the flux problem for stationary incompressible Navier–Stokes equations in domains with a multiply connected boundary”, Acta Appl. Math., 37:1-2 (1994), 21–30 | DOI | MR | Zbl

[12] H. Kozono, T. Yanagisawa, “Leray's problem on the stationary Navier–Stokes equations with inhomogeneous boundary data”, Math. Z., 262:1 (2009), 27–39 | DOI | MR | Zbl

[13] J. Neustupa, “A new approach to the existence of weak solutions of the steady Navier–Stokes system with inhomogeneous boundary data in domains with noncompact boundaries”, Arch. Ration. Mech. Anal., 198:1 (2010), 331–348 | DOI | MR | Zbl

[14] H. Fujita, “On stationary solutions to Navier–Stokes equation in symmetric plane domains under general outflow condition”, Navier–Stokes equations: theory and numerical methods (Varenna, 1997), Pitman Res. Notes Math. Ser., 388, Longman, Harlow, 1998, 16–30 | MR | Zbl

[15] V. V. Pukhnachev, “Viscous flows in domains with a multiply connected boundary”, New directions in mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2010, 333–348 | DOI | MR | Zbl

[16] H. Morimoto, “A remark on the existence of 2-D steady Navier–Stokes flow in bounded symmetric domain under general outflow condition”, J. Math. Fluid Mech., 9:3 (2007), 411–418 | DOI | MR | Zbl

[17] Ch. J. Amick, “Existence of solutions to the nonhomogeneous steady Navier–Stokes equations”, Indiana Univ. Math. J., 33:6 (1984), 817–830 | DOI | MR | Zbl

[18] M. V. Korobkov, “Bernoulli law under minimal smoothness assumptions”, Dokl. Math., 83:1 (2011), 107–110 | DOI | MR | Zbl

[19] M. V. Korobkov, K. Pileckas, R. Russo, “On the flux problem in the theory of steady Navier–Stokes equations with nonhomogeneous boundary conditions”, Arch. Ration. Mech. Anal., 207:1 (2013), 185–213 | DOI | MR | Zbl

[20] M. V. Korobkov, K. Pileckas, R. Russo, “Steady Navier–Stokes system with nonhomogeneous boundary conditions in the axially symmetric case”, C. R. Acad. Sci. Paris Sér. IIB Méc., 340:3 (2012), 115–119 | DOI

[21] M. Korobkov, K. Pileckas, R. Russo, “The existence of a solution with finite Dirichlet integral for the steady Navier–Stokes equations in a plane exterior symmetric domain”, J. Math. Pures Appl. (9), 101:3 (2014), 257–274 | DOI | MR | Zbl

[22] M. V. Korobkov, K. Pileckas, R. Russo, “Solution of Leray's problem for stationary Navier–Stokes equations in plane and axially symmetric spatial domains”, Ann. of Math. (2), 181:2 (2015), 769–807 | DOI

[23] M. Korobkov, K. Pileckas, R. Russo, “The existence theorem for steady Navier–Stokes equations in the axially symmetric case”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2015 (to appear) , DOI: ; 2011 (v2 – 2012), 36 pp., arXiv: 10.2422/2036-2145.201204_0031110.6301

[24] M. Korobkov, K. Pileckas, R. Russo, The existence theorem for the steady Navier–Stokes problem in exterior axially symmetric $3\mathrm D$ domains, 2014, 75 pp., arXiv: 1403.6921

[25] J. Bourgain, M. V. Korobkov, J. Kristensen, “On the Morse–Sard property and level sets of Sobolev and BV functions”, Rev. Mat. Iberoam., 29:1 (2013), 1–23 | DOI | MR | Zbl

[26] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl

[27] A. Takeshita, “A remark on Leray's inequality”, Pacific J. Math., 157:1 (1993), 151–158 | DOI | MR | Zbl

[28] G. P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems, Springer Monogr. Math., 2nd ed., Springer, New York, 2011, xiv + 1018 pp. | DOI | MR | Zbl

[29] R. Farwig, H. Kozono, T. Yanagisawa, “Leray's inequality in general multi-connected domains in $\mathbb{R}^n$”, Math. Ann., 354:1 (2012), 137–145 | DOI | MR | Zbl

[30] J. G. Heywood, “On the impossibility, in some cases, of the Leray–Hopf condition for energy estimates”, J. Math. Fluid Mech., 13:3 (2011), 449–457 | DOI | MR | Zbl

[31] O. A. Ladyzhenskaya, “Investigation of the Navier–Stokes equation for a stationary flow of an incompressible fluid”, Amer. Math. Soc. Transl. Ser. 2, 25, Amer. Math. Soc., Providence, RI, 1963, 173–197 | MR | Zbl

[32] I. I. Vorovich, V. I. Yudovich, “Statsionarnoe techenie vyazkoi neszhimaemoi zhidkosti”, Matem. sb., 53(95):4 (1961), 393–428 | MR

[33] L. V. Kapitanskiĭ, K. I. Pileckas, “Spaces of solenoidal vector fields and boundary value problems for the Navier–Stokes equations in domains with noncompact boundaries”, Proc. Steklov Inst. Math., 159 (1984), 3–34 | MR | Zbl

[34] N. E. Kotchin, I. A. Kibel, N. V. Rose, Theoretische Hydromechanik, v. II, Akademie-Verlag, Berlin, 1955, viii+569 pp. | MR

[35] H. Fujita, H. Morimoto, “A remark on the existence of the Navier–Stokes flow with non-vanishing outflow condition”, Nonlinear waves (Sapporo, 1995), GAKUTO Internat. Ser. Math. Sci. Appl., 10, Gakkōtosho, Tokyo, 1997, 53–61 | MR | Zbl

[36] A. Russo, G. Starita, “On the existence of steady-state solutions to the Navier–Stokes system for large fluxes”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7:1 (2008), 171–180 | MR | Zbl

[37] H. Morimoto, “A solution to the stationary Navier–Stokes equations under the boundary condition with non-vanishing outflow”, Mem. Inst. Sci. Technol. Meiji Univ., 31 (1992), 7–12

[38] H. Morimoto, “Stationary Navier–Stokes equations with non-vanishing outflow condition”, Hokkaido Math. J., 24:3 (1995), 641–648 | DOI | MR | Zbl

[39] H. Morimoto, S. Ukai, “Perturbation of the Navier–Stokes flow in an annular domain with the non-vanishing outflow condition”, J. Math. Sci. Univ. Tokyo, 3:1 (1996), 73–82 | MR | Zbl

[40] H. Fujita, H. Morimoto, H. Okamoto, “Stability analysis of Navier–Stokes flows in annuli”, Math. Methods Appl. Sci., 20:11 (1997), 959–978 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[41] V. I. Polezhaev, A. V. Bune, N. A. Verezub, G. S. Glushko, B. L. Gryaznov, K. G. Dubovik, C. A. Nikitin, A. I. Prostomolotov, A. I. Fedoseev, S. G. Cherkasov, Matematicheskoe modelirovanie konvektivnogo teploobmena na osnove uravnenii Nave–Stoksa, Nauka, M., 1987, 272 pp. | Zbl

[42] G. V. Alekseev, V. V. Pukhnachev, “Osesimmetrichnaya zadacha protekaniya dlya uravnenii Nave–Stoksa v peremennykh zavikhrennost–funktsiya toka”, Dokl. RAN, 445:4 (2012), 402–406 | MR

[43] J. R. Dorronsoro, “Differentiability properties of functions with bounded variation”, Indiana Univ. Math. J., 38:4 (1989), 1027–1045 | DOI | MR | Zbl

[44] J. Bourgain, M. V. Korobkov, J. Kristensen, “On the Morse–Sard property and level sets of $W^{n,1}$ Sobolev functions on $\mathbb{R}^n$”, J. Reine Angew. Math., March 2013 (Online first) | DOI

[45] M. V. Korobkov, J. Kristensen, “On the Morse–Sard theorem for the sharp case of Sobolev mappings”, Indiana Univ. Math. J., 63:6 (2014) (to appear); http://www.iumj.indiana.edu/IUMJ/Preprints/5431.pdf

[46] A. S. Kronrod, “O funktsiyakh dvukh peremennykh”, UMN, 5:1(35) (1950), 24–134 | MR | Zbl

[47] R. L. Moore, “Concerning triods in the plane and the junction points of plane continua”, Proc. Natl. Acad. Sci. USA, 14:1 (1928), 85–88 | DOI | Zbl

[48] C. R. Pittman, “An elementary proof of the triod theorem”, Proc. Amer. Math. Soc., 25:4 (1970), 919 | DOI | MR | Zbl

[49] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992, viii+268 pp. | MR | Zbl

[50] J. Malý, D. Swanson, W. P. Ziemer, “The co-area formula for Sobolev mappings”, Trans. Amer. Math. Soc., 355:2 (2003), 477–492 (electronic) | DOI | MR | Zbl

[51] V. V. Pukhnachev, “Problema Zh. Lere i gipoteza V. I. Yudovicha”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki, 2009, Spets. vypusk “Aktualnye problemy matematicheskoi gidrodinamiki”, 185–194

[52] V. V. Pukhnachev, “Singular solutions of Navier–Stokes equations”, Proceedings of the St. Petersburg Mathematical Society, v. XV, Amer. Math. Soc. Transl. Ser. 2, 232, Advances in mathematical analysis of partial differential equations, Amer. Math. Soc., Providence, RI, 2014, 193–218

[53] A. Russo, A. Tartaglione, “On the existence of singular solutions of the stationary Navier–Stokes problem”, Lith. Math. J., 53:4 (2013), 423–437 | DOI | MR

[54] J. Neustupa, “On the steady Navier–Stokes boundary value problem in an unbounded 2D domain with arbitrary fluxes through the components of the boundary”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 55:2 (2009), 353–365 | DOI | MR | Zbl

[55] K. Kaulakytė, K. Pileckas, “On the nonhomogeneous boundary value problem for the Navier–Stokes system in a class of unbounded domains”, J. Math. Fluid Mech., 14:4 (2012), 693–716 | DOI | MR | Zbl

[56] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5(77) (1957), 3–122 | MR | Zbl

[57] L. Rivkind, V. A. Solonnikov, “Jeffery–Hamel asymptotics for steady state Navier–Stokes flow in domains with sector-like outlets to infinity”, J. Math. Fluid Mech., 2:4 (2000), 324–352 | DOI | MR | Zbl

[58] V. A. Kondrat'ev, “Asymptotic of solution of the Navier–Stokes equation near the angular point of the boundary”, J. Appl. Math. Mech., 31:1 (1967), 125–129 | DOI | MR | Zbl

[59] V. I. Judovič, “Periodic motions of a viscous incompressible fluid”, Soviet Math. Dokl., 1 (1960), 168–172 | MR | Zbl

[60] T. Kobayashi, “Time periodic solutions of the Navier–Stokes equations under general outflow condition in a two dimensional symmetric channel”, Hokkaido Math. J., 39:3 (2010), 291–316 | DOI | MR | Zbl