The flux problem for the Navier--Stokes equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 1065-1122

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a survey of results on the Leray problem (1933) for the Navier–Stokes equations of an incompressible fluid in a domain with multiple boundary components. Imposed on the boundary of the domain are inhomogeneous boundary conditions which satisfy the necessary requirement of zero total flux. The authors have proved that the problem is solvable in arbitrary bounded planar or axially symmetric domains. The proof uses Bernoulli's law for weak solutions of the Euler equations and a generalization of the Morse–Sard theorem for functions in Sobolev spaces. New a priori bounds for the Dirichlet integral of the velocity vector field in symmetric flows, as well as estimates for the regular component of the velocity in flows with singularities of source/sink type are presented. Bibliography: 60 titles.
Keywords: Navier–Stokes and Euler equations, multiple boundary components, Dirichlet integral, virtual drain, Bernoulli's law, maximum principle.
@article{RM_2014_69_6_a3,
     author = {M. V. Korobkov and K. Pileckas and V. V. Pukhnachov and R. Russo},
     title = {The flux problem for the {Navier--Stokes} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1065--1122},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_6_a3/}
}
TY  - JOUR
AU  - M. V. Korobkov
AU  - K. Pileckas
AU  - V. V. Pukhnachov
AU  - R. Russo
TI  - The flux problem for the Navier--Stokes equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 1065
EP  - 1122
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_6_a3/
LA  - en
ID  - RM_2014_69_6_a3
ER  - 
%0 Journal Article
%A M. V. Korobkov
%A K. Pileckas
%A V. V. Pukhnachov
%A R. Russo
%T The flux problem for the Navier--Stokes equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 1065-1122
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2014_69_6_a3/
%G en
%F RM_2014_69_6_a3
M. V. Korobkov; K. Pileckas; V. V. Pukhnachov; R. Russo. The flux problem for the Navier--Stokes equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 1065-1122. http://geodesic.mathdoc.fr/item/RM_2014_69_6_a3/