The flux problem for the Navier--Stokes equations
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 1065-1122
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This is a survey of results on the Leray problem (1933) for the Navier–Stokes equations of an incompressible fluid in a domain with multiple boundary components. Imposed on the boundary of the domain are inhomogeneous boundary conditions which satisfy the necessary requirement of zero total flux. The authors have proved that the problem is solvable in arbitrary bounded planar or axially symmetric domains. The proof uses Bernoulli's law for weak solutions of the Euler equations and a generalization of the Morse–Sard theorem for functions in Sobolev spaces. New a priori bounds for the Dirichlet integral of the velocity vector field in symmetric flows, as well as estimates for the regular component of the velocity in flows with singularities of source/sink type are presented.
Bibliography: 60 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Navier–Stokes and Euler equations, multiple boundary components, Dirichlet integral, virtual drain, Bernoulli's law, maximum principle.
                    
                    
                    
                  
                
                
                @article{RM_2014_69_6_a3,
     author = {M. V. Korobkov and K. Pileckas and V. V. Pukhnachov and R. Russo},
     title = {The flux problem for the {Navier--Stokes} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1065--1122},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_6_a3/}
}
                      
                      
                    TY - JOUR AU - M. V. Korobkov AU - K. Pileckas AU - V. V. Pukhnachov AU - R. Russo TI - The flux problem for the Navier--Stokes equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 1065 EP - 1122 VL - 69 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2014_69_6_a3/ LA - en ID - RM_2014_69_6_a3 ER -
%0 Journal Article %A M. V. Korobkov %A K. Pileckas %A V. V. Pukhnachov %A R. Russo %T The flux problem for the Navier--Stokes equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 1065-1122 %V 69 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2014_69_6_a3/ %G en %F RM_2014_69_6_a3
M. V. Korobkov; K. Pileckas; V. V. Pukhnachov; R. Russo. The flux problem for the Navier--Stokes equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 1065-1122. http://geodesic.mathdoc.fr/item/RM_2014_69_6_a3/
