Virtual continuity of measurable functions and its applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 1031-1063 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A classical theorem of Luzin states that a measurable function of one real variable is ‘almost’ continuous. For measurable functions of several variables the analogous statement (continuity on a product of sets having almost full measure) does not hold in general. The search for a correct analogue of Luzin's theorem leads to a notion of virtually continuous functions of several variables. This apparently new notion implicitly appears in the statements of embedding theorems and trace theorems for Sobolev spaces. In fact it reveals the nature of such theorems as statements about virtual continuity. The authors' results imply that under the conditions of Sobolev theorems there is a well-defined integration of a function with respect to a wide class of singular measures, including measures concentrated on submanifolds. The notion of virtual continuity is also used for the classification of measurable functions of several variables and in some questions on dynamical systems, the theory of polymorphisms, and bistochastic measures. In this paper the necessary definitions and properties of admissible metrics are recalled, several definitions of virtual continuity are given, and some applications are discussed. Bibliography: 24 titles.
Keywords: admissible metrics, virtual topology, bistochastic measures, trace theorems, embedding theorems.
@article{RM_2014_69_6_a2,
     author = {A. M. Vershik and P. B. Zatitskiy and F. V. Petrov},
     title = {Virtual continuity of measurable functions and its applications},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1031--1063},
     year = {2014},
     volume = {69},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_6_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - P. B. Zatitskiy
AU  - F. V. Petrov
TI  - Virtual continuity of measurable functions and its applications
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 1031
EP  - 1063
VL  - 69
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_6_a2/
LA  - en
ID  - RM_2014_69_6_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%A P. B. Zatitskiy
%A F. V. Petrov
%T Virtual continuity of measurable functions and its applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 1031-1063
%V 69
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2014_69_6_a2/
%G en
%F RM_2014_69_6_a2
A. M. Vershik; P. B. Zatitskiy; F. V. Petrov. Virtual continuity of measurable functions and its applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 1031-1063. http://geodesic.mathdoc.fr/item/RM_2014_69_6_a2/

[1] R. A. Adams, J. J. F. Fournier, Sobolev spaces, Pure Appl. Math. (Amst.), 140, 2nd ed., Elsevier/Academic press, Amsterdam, 2003, xiv+305 pp. | MR | Zbl

[2] M. Denker, M. Gordin, “Limit theorems for von Mises statistics of a measure preserving transformation”, Probab. Theory Related Fields, 160:1–2 (2014), 1–45 ; (2013), 47 pp., arXiv: 1109.0635v2 | DOI | MR

[3] M. Gromov, Metric structure for Riemannian and non-Riemannian spaces, Progr. Math., 152, Birkhäuser Boston, Inc., Boston, MA, 1999, xx+585 pp. | MR | Zbl

[4] L. V. Kantorovich, “O peremeschenii mass”, Dokl. AN SSSR, 37:7-8 (1942), 227–229 ; РўРμРѕСЂРёСЏ РїСЂРμдставлРμРЅРёРNo, динамичРμСЃРєРёРμ СЃРёСЃС‚РμРјС‹. XI, РЎРїРμциальныРNo выпуск, Зап. науч. СЃРμРј. РџРћРњР�, 312, РџРћРњР�, РЎРџР±., 2004, 11–14 ; L. V. Kantorovich, “On the translocation of masses”, J. Math. Sci. (N. Y.), 133:4 (2006), 1381–1382 | MR | Zbl | MR | Zbl | DOI

[5] L. V. Kantorovich, G. Sh. Rubinshtein, “Prostranstvo vpolne additivnykh funktsii”, Vestn. Leningr. un-ta, 13:7 (1958), 52–59 | MR | Zbl

[6] J. Komlós, “A generalization of a problem of Steinhaus”, Acta Math. Acad. Sci. Hungar., 18:1-2 (1967), 217–229 | DOI | MR | Zbl

[7] L. Lovász, Large networks and graph limits, Amer. Math. Soc. Colloq. Publ., 60, Amer. Math. Soc., Providence, RI, 2012, xiv+475 pp. | MR | Zbl

[8] L. Lovász, Coupling measure concentrated on a given set, 2\par pp. www.cs.elte.hu/~lovasz/book/homnotes-A-3-4b.pdf

[9] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | DOI | MR | MR | Zbl | Zbl

[10] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400 | DOI | MR | Zbl

[11] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25:1 (1949), 107–150 | MR | Zbl

[12] K.-T. Sturm, The space of spaces: curvature bounds and gradient flows on the space of metric measure space, 2012, 75 pp., arXiv: 1208.0434

[13] A. M. Vershik, “The universal Urysohn space, Gromov metric triples and random metrics on the natural numbers”, Russian Math. Surveys, 53:5 (1998), 921–928 | DOI | DOI | MR | Zbl

[14] A. M. Vershik, “Classification of measurable functions of several variables and invariantly distributed random matrices”, Funct. Anal. Appl., 36:2 (2002), 93–105 | DOI | DOI | MR | Zbl

[15] A. M. Vershik, “Random and universal metric spaces”, Dynamics and randomness II, Nonlinear Phenom. Complex Systems, 10, Kluwer Acad. Publ., Dordrecht, 2004, 199–228 | DOI | MR | Zbl

[16] A. M. Vershik, “Random metric spaces and universality”, Russian Math. Surveys, 59:2 (2004), 259–295 | DOI | DOI | MR | Zbl

[17] A. M. Vershik, “Polymorphisms, Markov processes, and quasi-similarity”, Discrete Contin. Dyn. Syst., 13:5 (2005), 1305–1324 | DOI | MR | Zbl

[18] A. M. Vershik, “What does a generic Markov operator look like?”, St. Petersburg Math. J., 17:5 (2006), 763–772 | DOI | MR | Zbl

[19] A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–185 | MR | Zbl

[20] A. M. Vershik, “On classification of measurable functions of several variables”, J. Math. Sci. (N. Y.), 190:3 (2013), 427–437 | DOI | MR

[21] A. M. Vershik, “Long history of Monge–Kantorovich transportation problem”, Math. Intelligencer, 35:4 (2013), 1–9 | DOI | MR | Zbl

[22] A. M. Vershik, P. B. Zatitskii, F. V. Petrov, “Virtual continuity of measurable functions of several variables and embedding theorems”, Funct. Anal. Appl., 47:3 (2013), 165–173 | DOI | DOI | MR

[23] A. M. Vershik, P. B. Zatitskii, F. V. Petrov, “Integrirovanie virtualno nepreryvnykh funktsii po bistokhasticheskim meram i formula sleda yadernykh operatorov”, Algebra i analiz (to appear)

[24] P. B. Zatitskiy, F. V. Petrov, “Correction of metrics”, J. Math. Sci. (N. Y.), 181:6 (2012), 867–870 | DOI | MR | Zbl