Entropy in the sense of Boltzmann and Poincar\'e
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 995-1029

Voir la notice de l'article provenant de la source Math-Net.Ru

The $H$-theorem is proved for generalized equations of chemical kinetics, and important physical examples of such generalizations are considered: a discrete model of the quantum kinetic equations (the Uehling–Uhlenbeck equations) and a quantum Markov process (a quantum random walk). The time means are shown to coincide with the Boltzmann extremals for these equations and for the Liouville equation. Bibliography: 41 titles.
Keywords: Boltzmann equation, $H$-theorem, entropy, conservation laws, discrete model, Boltzmann extremal, time mean, Cesáro mean, variational principle.
Mots-clés : Liouville equation, Markov chains
@article{RM_2014_69_6_a1,
     author = {V. V. Vedenyapin and S. Z. Adzhiev},
     title = {Entropy in the sense of {Boltzmann} and {Poincar\'e}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {995--1029},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_6_a1/}
}
TY  - JOUR
AU  - V. V. Vedenyapin
AU  - S. Z. Adzhiev
TI  - Entropy in the sense of Boltzmann and Poincar\'e
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 995
EP  - 1029
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_6_a1/
LA  - en
ID  - RM_2014_69_6_a1
ER  - 
%0 Journal Article
%A V. V. Vedenyapin
%A S. Z. Adzhiev
%T Entropy in the sense of Boltzmann and Poincar\'e
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 995-1029
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2014_69_6_a1/
%G en
%F RM_2014_69_6_a1
V. V. Vedenyapin; S. Z. Adzhiev. Entropy in the sense of Boltzmann and Poincar\'e. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 995-1029. http://geodesic.mathdoc.fr/item/RM_2014_69_6_a1/