Entropy in the sense of Boltzmann and Poincar\'e
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 995-1029
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The $H$-theorem is proved for generalized equations of chemical kinetics, and important physical examples of such generalizations are considered: a discrete model of the quantum kinetic equations (the Uehling–Uhlenbeck equations) and a quantum Markov process (a quantum random walk). The time means are shown to coincide with the Boltzmann extremals for these equations and for the Liouville equation.
Bibliography: 41 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Boltzmann equation, $H$-theorem, entropy, conservation laws, discrete model, Boltzmann extremal, time mean, Cesáro mean, variational principle.
Mots-clés : Liouville equation, Markov chains
                    
                  
                
                
                Mots-clés : Liouville equation, Markov chains
@article{RM_2014_69_6_a1,
     author = {V. V. Vedenyapin and S. Z. Adzhiev},
     title = {Entropy in the sense of {Boltzmann} and {Poincar\'e}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {995--1029},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_6_a1/}
}
                      
                      
                    TY - JOUR AU - V. V. Vedenyapin AU - S. Z. Adzhiev TI - Entropy in the sense of Boltzmann and Poincar\'e JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 995 EP - 1029 VL - 69 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2014_69_6_a1/ LA - en ID - RM_2014_69_6_a1 ER -
V. V. Vedenyapin; S. Z. Adzhiev. Entropy in the sense of Boltzmann and Poincar\'e. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 995-1029. http://geodesic.mathdoc.fr/item/RM_2014_69_6_a1/
