Entropy in the sense of Boltzmann and Poincaré
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 995-1029 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $H$-theorem is proved for generalized equations of chemical kinetics, and important physical examples of such generalizations are considered: a discrete model of the quantum kinetic equations (the Uehling–Uhlenbeck equations) and a quantum Markov process (a quantum random walk). The time means are shown to coincide with the Boltzmann extremals for these equations and for the Liouville equation. Bibliography: 41 titles.
Keywords: Boltzmann equation, $H$-theorem, entropy, conservation laws, discrete model, Boltzmann extremal, time mean, Cesáro mean, variational principle.
Mots-clés : Liouville equation, Markov chains
@article{RM_2014_69_6_a1,
     author = {V. V. Vedenyapin and S. Z. Adzhiev},
     title = {Entropy in the sense of {Boltzmann} and {Poincar\'e}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {995--1029},
     year = {2014},
     volume = {69},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_6_a1/}
}
TY  - JOUR
AU  - V. V. Vedenyapin
AU  - S. Z. Adzhiev
TI  - Entropy in the sense of Boltzmann and Poincaré
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 995
EP  - 1029
VL  - 69
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_6_a1/
LA  - en
ID  - RM_2014_69_6_a1
ER  - 
%0 Journal Article
%A V. V. Vedenyapin
%A S. Z. Adzhiev
%T Entropy in the sense of Boltzmann and Poincaré
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 995-1029
%V 69
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2014_69_6_a1/
%G en
%F RM_2014_69_6_a1
V. V. Vedenyapin; S. Z. Adzhiev. Entropy in the sense of Boltzmann and Poincaré. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 995-1029. http://geodesic.mathdoc.fr/item/RM_2014_69_6_a1/

[1] L. Boltsman, “Dalneishie issledovaniya teplovogo ravnovesiya mezhdu molekulami gaza”, Izbrannye trudy, Nauka, M., 1984, 125–189 ; L. Boltzmann, “Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen”, Wien. Ber., 66 (1872), 275–370; Wissenschaftliche Abhandlungen, v. 1, Barth, Leipzig, 1909, 316–402 | MR | DOI | MR | Zbl

[2] S. K. Godunov, U. M. Sultangazin, “On discrete models of the kinetic Boltzmann equation”, Russian Math. Surveys, 26:3 (1971), 1–56 | DOI | MR | Zbl

[3] L. Boltsman, “O svyazi mezhdu vtorym nachalom mekhanicheskoi teorii teploty i teoriei veroyatnostei v teoremakh o teplovom ravnovesii”, Izbrannye trudy, Nauka, M., 1984, 190–235 ; L. Boltzmann, “Über die Beziehung zwischen dem zweiten Hauptsatze der Mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respektive den Sätzen über das Wärmegleichgewicht”, Wien. Ber., 76 (1878), 373–435; Wissenschaftliche Abhandlungen, v. 2, Barth, Leipzig, 1909, 164–223 | MR | DOI | MR | Zbl

[4] A. Puankare, “Zamechaniya o kineticheskoi teorii gazov”, Izbrannye trudy, v. 3, Nauka, M., 1974, 385–412 ; H. Poincaré, “Réflections sur la théorie cinétique des gaz”, J. Phys. Théoret. Appl., 5 (1906), 369–403 ; {ØE}uvres, v. IX, Gauthier-Villars, Paris, 1954, 587–619 | MR | Zbl | DOI | MR | Zbl

[5] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 320 pp. | MR | Zbl

[6] V. V. Kozlov, D. V. Treschev, “Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems”, Theoret. and Math. Phys., 134:3 (2003), 339–350 | DOI | DOI | MR | Zbl

[7] L. Boltsman, “Issledovanie ravnovesiya zhivoi sily mezhdu dvizhuschimisya materialnymi tochkami”, Izbrannye trudy, M., 1984, 30–66 ; L. Boltzmann, “Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten”, Wien. Ber., 58 (1868), 517–560; Wissenschaftliche Abhandlungen, v. 1, Barth, Leipzig, 1909, 49–96 | MR | DOI | MR | Zbl

[8] J. W. Gibbs, Elementary principles in statistical mechanics: developed with especial reference to the rational foundation of thermodynamics, Charles Scribners Sons, New York; Edward Arnold, London, 1902, xviii+207 pp. ; Дж. Рљ. МаксвРμлл, “РџРѕ РїРѕРІРѕРґСѓ С‚РμРѕСЂРμРјС‹ Больцмана Рѕ нормальном распрРμРґРμР»РμРЅРёРё СЌРЅРμСЂРіРёРё РІ СЃРёСЃС‚РμРјРμ матРμриальныС... точРμРє”, РўСЂСѓРґС‹ РїРѕ РєРёРЅРμтичРμСЃРєРѕРNo С‚РμРѕСЂРёРё, Бином. Лаборатория знаниРNo, Рњ., 2011, 321–351 | MR | Zbl

[9] J. C. Maxwell, “On Boltzmann's theorem on the average distribution of energy in a system of material points”, Trans. Cambridge Philos. Soc., 12 (1879), 547–570 | Zbl

[10] V. V. Vedenyapin, “Time averages and Boltzmann extremals”, Dokl. Math., 78:2 (2008), 686–688 | DOI | MR | Zbl

[11] S. Z. Adzhiev, V. V. Vedenyapin, “Time averages and Boltzmann extremals for Markov chains, discrete Liouville equations, and the Kac circular model”, Comput. Math. Math. Phys., 51:11 (2011), 1942–1952 | DOI | MR | Zbl

[12] F. Riesz, B. Sz.-Nagy, Leçons d'analyse fonctionnelle, 4ème éd., Gauthier-Villars, Paris; Akadémiai Kiadó, Budapest, 1965, viii+490 pp. | MR | MR | Zbl

[13] V. V. Vedenyapin, Yu. N. Orlov, “Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation”, Theoret. and Math. Phys., 121:2 (1999), 1516–1523 | DOI | DOI | MR | Zbl

[14] J. K. Moser, “Lectures on Hamiltonian systems”, Mem. Amer. Math. Soc., 1968, no. 81, Amer. Math. Soc., Providence, RI, 60 pp. | MR | Zbl | Zbl

[15] A. D. Bruno, The restricted 3-body problem: plane periodic orbits, de Gruyter Exp. Math., 17, Walter de Gruyter Co., Berlin, 1994, xiv+362 pp. | MR | MR | Zbl | Zbl

[16] S. Kullback, R. A. Leibler, “On information and sufficiency”, Ann. Math. Statist., 22:1 (1951), 79–86 | DOI | MR | Zbl

[17] I. N. Sanov, “O veroyatnosti bolshikh otklonenii sluchainykh velichin”, Matem. sb., 42(84):1 (1957), 11–44 | MR | Zbl

[18] N. N. Chentsov, “Nonsymmetrical distance between probability distributions, entropy and the theorem of Pythagoras”, Math. Notes, 4:3 (1968), 686–691 | DOI | MR | Zbl

[19] T. Morimoto, “Markov processes and the $H$-theorem”, J. Phys. Soc. Japan, 18:3 (1963), 328–331 | DOI | MR | Zbl

[20] I. Csiszár, “Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1963), 85–108 | MR | Zbl

[21] V. V. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001, 112 pp.

[22] A. I. Vol'pert, S. I. Hudjaev, Analysis in classes of discontinuous functions and equations of mathematical physics, Mech. Anal., 8, Martinus Nijhoff Publishers, Dordrecht, 1985, xviii+678 pp. | MR | MR | Zbl

[23] Ya. G. Batischeva, V. V. Vedenyapin, “II-i zakon termodinamiki dlya khimicheskoi kinetiki”, Matem. modelirovanie, 17:8 (2005), 106–110 | MR | Zbl

[24] V. V. Vedenyapin, I. V. Mingalev, O. V. Mingalev, “On discrete models of the quantum Boltzmann equation”, Russian Acad. Sci. Sb. Math., 80:2 (1995), 271–285 | DOI | MR | Zbl

[25] L. D. Landau, E. M. Lifshitz, A shorter course of theoretical physics, v. 2, Quantum mechanics, Pergamon Press, Oxford–New York–Toronto, ON, 1974, xii+369 pp. | MR | MR

[26] T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz, Publ. Sci. Inst. Mittag-Leffler, 2, Almqvist Wiksells Boktryckeri Ab, Uppsala, 1957, 112 pp. | MR | MR | Zbl

[27] E. M. Lifschitz, L. P. Pitajewski, Lehrbuch der theoretischen Physik (“Landau–Lifshits”), v. X, Physikalische Kinetik, Akademie-Verlag, Berlin, 1983, xiv+480 pp. | MR | MR

[28] V. A. Malyshev, S. A. Pirogov, “Reversibility and irreversibility in stochastic chemical kinetics”, Russian Math. Surveys, 63:1 (2008), 1–34 | DOI | DOI | MR | Zbl

[29] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Academic Press, Inc., New York, 1965, xi+458 pp. | MR | MR | Zbl | Zbl

[30] V. V. Vedenyapin, Kineticheskaya teoriya po Maksvellu, Boltsmanu i Vlasovu, MGOU, M., 2005

[31] Ya. B. Zeldovich, A. D. Myshkis, Elementy matematicheskoi fiziki. Sreda iz nevzaimodeistvuyuschikh chastits, Nauka, M., 1973, 351 pp. | MR

[32] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, M., Nauka, 1979, 760 pp. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications, Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984, xv+464 СЃ. ; Part II. The geometry and topology of manifolds, Grad. Texts in Math., 104, 1985, xv+430 pp. | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[33] N. Kryloff, N. N. Bogoliouboff, “Les mesures invariantes et transitives dans la mécanique non linéaire”, Matem. sb., 1(43):5 (1936), 707–710 | Zbl

[34] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, NJ, 1960, viii+523 pp. | MR | MR | Zbl | Zbl

[35] I. P. Kornfel'd, Ya. G. Sinai, A. M. Vershik, “General ergodic theory of groups of measure preserving transformations”, Dynamical systems. II, Encyclopaedia Math. Sci., 2, Springer, Berlin, 1989, 1–98 | MR | Zbl

[36] V. V. Kozlov, Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2008, 208 pp.

[37] R. Penrose, Cycles of time. An extraordinary new view of the universe, Alfred A. Knopf, Inc., New York, 2010, xiv+288 pp. | MR | Zbl

[38] M. Kats, Neskolko veroyatnostnykh zadach fiziki i matematiki, per. s polsk., Nauka, M., 1967, 176 pp.

[39] E. Zermelo, “Ueber einen Satz der Dynamik und die mechanische Wärmetheorie”, Ann. Phys., 57 (1896), 485–494 | DOI | MR | Zbl

[40] J. Loschmidt, “Ueber den Zustand des Wärmegleichgewichtes eines Systems von Körpern mit Rücksicht auf die Schwerkraft”, Wien. Ber., 73:2 (1876), 128–142 | MR

[41] A. V. Gasnikov, E. V. Gasnikova, “On entropy-type functionals arising in stochastic chemical kinetics related to the concentration of the invariant measure and playing the role of Lyapunov functions in the dynamics of quasiaverages”, Math. Notes, 94:6 (2013), 854–861 | DOI | DOI | MR | Zbl