Turbulence for the generalised Burgers equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 957-994
Voir la notice de l'article provenant de la source Math-Net.Ru
This survey reviews rigorous results obtained by A. Biryuk and the author on turbulence for the generalised space-periodic Burgers equation
$$
u_t+f'(u)u_x=\nu u_{xx}+\eta,\qquad x \in S^1=\mathbb{R}/\mathbb{Z},
$$
where $f$ is smooth and strongly convex, and the constant $0\nu\ll 1$ corresponds to the viscosity coefficient.
Both the unforced case ($\eta=0$) and the case when $\eta$ is a random force which is smooth with respect to $x$ and irregular (kick or white noise) with respect to $t$ are considered. In both cases sharp bounds of the form $C\nu^{-\delta}$, $\delta\geqslant 0$, are obtained for the Sobolev norms of $u$ averaged over time and over the ensemble, with the same value of $\delta$ for upper and lower bounds. These results yield sharp bounds for small-scale quantities characterising turbulence, confirming the physical predictions.
Bibliography: 56 titles.
Keywords:
Burgers equation, stochastic partial differential equations, intermittency, stationary measure.
Mots-clés : turbulence
Mots-clés : turbulence
@article{RM_2014_69_6_a0,
author = {A. A. Boritchev},
title = {Turbulence for the generalised {Burgers} equation},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {957--994},
publisher = {mathdoc},
volume = {69},
number = {6},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_6_a0/}
}
A. A. Boritchev. Turbulence for the generalised Burgers equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 6, pp. 957-994. http://geodesic.mathdoc.fr/item/RM_2014_69_6_a0/