Averaging, passage through resonances, and capture into resonance in two-frequency systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 5, pp. 771-843 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Applying small perturbations to an integrable system leads to its slow evolution. For an approximate description of this evolution the classical averaging method prescribes averaging the rate of evolution over all the phases of the unperturbed motion. This simple recipe does not always produce correct results, because of resonances arising in the process of evolution. The phenomenon of capture into resonance consists in the system starting to evolve in such a way as to preserve the resonance property once it has arisen. This paper is concerned with application of the averaging method to a description of evolution in two-frequency systems. It is assumed that the trajectories of the averaged system intersect transversally the level surfaces of the frequency ratio and that certain other conditions of general position are satisfied. The rate of evolution is characterized by a small parameter $\varepsilon$. The main content of the paper is a proof of the following result: outside a set of initial data with measure of order $\sqrt \varepsilon$ the averaging method describes the evolution to within $O(\sqrt \varepsilon\,|\ln\varepsilon|)$ for periods of time of order $1/\varepsilon$. This estimate is sharp. The exceptional set of measure $\sqrt\varepsilon$ contains the initial data for phase points captured into resonance. A description of the motion of such phase points is given, along with a survey of related results on averaging. Examples of capture into resonance are presented for some problems in the dynamics of charged particles. Several open problems are stated. Bibliography: 65 titles.
Keywords: averaging method, resonance.
@article{RM_2014_69_5_a0,
     author = {A. I. Neishtadt},
     title = {Averaging, passage through resonances, and~capture into resonance in two-frequency systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {771--843},
     year = {2014},
     volume = {69},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_5_a0/}
}
TY  - JOUR
AU  - A. I. Neishtadt
TI  - Averaging, passage through resonances, and capture into resonance in two-frequency systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 771
EP  - 843
VL  - 69
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_5_a0/
LA  - en
ID  - RM_2014_69_5_a0
ER  - 
%0 Journal Article
%A A. I. Neishtadt
%T Averaging, passage through resonances, and capture into resonance in two-frequency systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 771-843
%V 69
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2014_69_5_a0/
%G en
%F RM_2014_69_5_a0
A. I. Neishtadt. Averaging, passage through resonances, and capture into resonance in two-frequency systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 5, pp. 771-843. http://geodesic.mathdoc.fr/item/RM_2014_69_5_a0/

[1] D. V. Anosov, “Osrednenie v sistemakh obyknovennykh differentsialnykh uravnenii s bystrokoleblyuschimisya resheniyami”, Izv. AN SSSR. Ser. matem., 24:5 (1960), 721–742 | MR | Zbl

[2] P. Fatou, “Sur le mouvement d'un système soumis à des forces à courte période”, Bull. Soc. Math. France, 56 (1928), 98–139 | MR | Zbl

[3] N. N. Bogolyubov, O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN USSR, Lvov, 1945, 140 pp. | MR | Zbl

[4] P. Goldreich, S. Peale, “Spin-orbit coupling in the solar system”, Astronom. J., 71:6 (1966), 425–438 | DOI

[5] A. M. Molchanov, “The resonant structure of the solar system: The law of planetary distances”, Icarus, 8:1-3 (1968), 203–215 | DOI

[6] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978, 304 pp. ; V. Arnol'd, Geometrical methods in the theory of ordinary differential equations, Grundlehren Math. Wiss., 250, Springer-Verlag, New York, 1988, xiv+351 pp. | MR | Zbl | DOI | MR | Zbl

[7] P. A. M. Dirac, “The adiabatic invariance of the quantum integrals”, Proc. Roy. Soc. Lond. A, 107 (1925), 725–734 | DOI | Zbl

[8] J. M. Burgers, “Adiabatic invariants of mechanical systems, I, II, III”, Proc. Roy. Acad. Amsterdam, 20 (1917/1918), 149–169

[9] V. I. Arnold, “Usloviya primenimosti i otsenka pogreshnosti metoda usredneniya dlya sistem, kotorye v protsesse evolyutsii prokhodyat cherez rezonansy”, Dokl. AN SSSR, 161:1 (1965), 9–12 | MR | Zbl

[10] A. I. Neishtadt, “O prokhozhdenii cherez rezonansy v dvukhchastotnoi zadache”, Dokl. AN SSSR, 221:2 (1975), 301–304 | MR | Zbl

[11] B. V. Chirikov, “Prokhozhdenie nelineinoi kolebatelnoi sistemy cherez rezonans”, Dokl. AN SSSR, 125:5 (1959), 1015–1018 | MR | Zbl

[12] V. K. Melnikov, “Ob ustoichivosti tsentra pri periodicheskikh po vremeni vozmuscheniyakh”, Tr. MMO, 12, GIFML, M., 1963, 3–52 | MR | Zbl

[13] J. Kevorkian, “On a model for reentry roll resonance”, SIAM J. Appl. Math., 26:3 (1974), 638–669 | DOI | Zbl

[14] A. D. Morozov, “O polnom kachestvennom issledovanii uravneniya Dyuffinga”, Differents. uravneniya, 12:2 (1976), 241–255 | MR | Zbl

[15] J. Murdock, “Qualitative theory of nonlinear resonance by averaging and dynamical systems methods”, Dynamics Reported, 1, Wiley, Chichester, 1988, 91–172 | DOI | MR | Zbl

[16] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, 2-e izd., Editorial URSS, M., 2002, 416 pp.; V. I. Arnol'd, V. V. Kozlov, A. I. Neishtadt, “Mathematical aspects of classical and celestial mechanics”, Dynamical systems, III, Encyclopaedia Math. Sci., 3, Springer-Verlag, Berlin, 2006, xiv+518 pp. | MR

[17] В J. A. Sanders, F. Verhulst, J. Murdock, Averaging methods in В nonlinear dynamical systems, Appl. Math. Sci., 59, 2nd ed., Springer-Verlag, New York, 2007, xxii+431 pp. | MR | Zbl

[18] P. Lochak, C. Meunier, Multiphase averaging for classical systems. With applications to adiabatic theorems, Appl. Math. Sci., 72, Springer-Verlag, New York, 1988, xii+360 pp. | DOI | MR | Zbl

[19] A. I. Neishtadt, O nekotorykh rezonansnykh zadachakh v nelineinykh sistemakh, Diss. ... kand. fiz.-matem. nauk, MGU, M., 1975

[20] A. I. Neishtadt, “Ob osrednenii v mnogochastotnykh sistemakh. II”, Dokl. AN SSSR, 226:6 (1976), 1295–1298 | MR | Zbl

[21] V. I. Arnold, Nekotorye zadachi teorii differentsialnykh uravnenii, Tezisy lektsii, M., 1974

[22] V. I. Arnold, Zadachi Arnolda, Fazis, M., 2000, x+452 pp. | MR | Zbl

[23] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, 4-e izd., Nauka, M., 1974, 504 pp. ; N. N. Bogolyubov, J. A. Mitropol'skij, Asymptotic methods in the theory of non-linear oscillations, Hindustan Publ. Corp., Delhi; Gordon and Breach Sci. Publ., New York, 1961, x+537 pp. | MR | Zbl | Zbl

[24] V. I. Arnold, “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6(114) (1963), 91–192 | MR | Zbl

[25] M. M. Khapaev, “Ob osrednenii v mnogochastotnykh sistemakh”, Dokl. AN SSSR, 217:5 (1974), 1021–1024 | MR | Zbl

[26] A. I. Neishtadt, Estimates of some integrals related to variations of smooth functions, 2012 (v2 – 2014), 7 pp., arXiv: 1209.5095

[27] V. E. Pronchatov, “Ob otsenke pogreshnosti metoda usredneniya v dvukhchastotnoi zadache”, Matem. sb., 134(176):1(9) (1987), 28–41 ; V. E. Pronchatov, “On an error estimate for the averaging method in a two-frequency problem”, Math. USSR-Sb., 62:1 (1989), 29–40 | MR | Zbl | DOI

[28] V. I. Bakhtin, “Nekotorye voprosy teorii usredneniya”, v state “Sovmestnye zasedaniya seminara imeni I. G. Petrovskogo po differentsialnym uravneniyam i matematicheskim problemam fiziki i Moskovskogo matematicheskogo obschestva (devyataya sessiya, 20–23 yanvarya 1986 g.)”, UMN, 41:4 (1986), 205

[29] V. I. Bakhtin, “Usrednenie v odnochastotnoi sisteme obschego polozheniya”, Differents. uravneniya, 27:9 (1991), 1493–1505 | MR | Zbl

[30] R. Haberman, “Energy bounds for the slow capture by a center in sustained resonance”, SIAM J. Appl. Math., 43:2 (1983), 244–256 | DOI | MR | Zbl

[31] C. Robinson, “Sustained resonance for a nonlinear system with slowly varying coefficients”, SIAM J. Math. Anal., 14:5 (1983), 847–860 | DOI | MR | Zbl

[32] W. L. Kath, “Necessary conditions for sustained reentry roll resonance”, SIAM J. Appl. Math., 43:2 (1983), 314–324 | DOI | MR | Zbl

[33] A. I. Neĭshtadt, “Averaging, capture into resonances, and chaos in nonlinear systems”, Chaos/Xaoc (Woods Hole, MA, 1989), Amer. Inst. Phys., New York, 1990, 261–273 | MR

[34] N. Fenichel, “Geometric singular perturbation theory for ordinary differential equations”, J. Differential Equations, 31:1 (1979), 53–98 | DOI | MR | Zbl

[35] D. Dolgopyat, “Repulsion from resonances”, Mém. Soc. Math. France (N. S.), 128 (2012), 119 pp. | MR | Zbl

[36] I. M. Lifshits, A. A. Slutskin, V. M. Nabutovskii, “O yavlenii rasseyaniya zaryazhennykh kvazichastits na osobykh tochkakh v $p$-prostranstve”, Dokl. AN SSSR, 137:3 (1961), 553–556 | MR

[37] A. I. Neishtadt, “On destruction of adiabatic invariants in multi-frequency systems”, International conference on differential equations (Barcelona, 1991), v. 1, 2, eds. Perelló C., Simó C., Solà-Morales J., World Sci. Publ., River Edge, NJ, 1993, 195–207 | MR | Zbl

[38] A. I. Neishtadt, “On adiabatic invariance in two-frequency systems”, Hamiltonian systems with three or more degrees of freedom (S'Agaró, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533, ed. Simó C., Kluwer Acad. Publ., Dordrecht, 1999, 193–212 | MR | Zbl

[39] A. I. Neishtadt, “Zakhvat v rezonans i rasseyanie na rezonansakh v dvukhchastotnykh sistemakh”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 250, Nauka, M., 2005, 198–218 | MR | Zbl

[40] L. A. Artsimovich, R. Z. Sagdeev, Fizika plazmy dlya fizikov, Atomizdat, M., 1979, 313 pp.

[41] N. N. Bogolyubov, D. N. Zubarev, “Metod asimptoticheskogo priblizheniya dlya sistem s vraschayuscheisya fazoi i ego primenenie k dvizheniyu zaryazhennykh chastits v magnitnom pole”, Ukr. matem. zhurn., 7:1 (1955), 5–17 | MR | Zbl

[42] G. M. Zaslavskii, A. I. Neishtadt, B. A. Petrovichev, R. Z. Sagdeev, “Mekhanizm usileniya diffuzii pri vzaimodeistvii volna–chastitsa v slabom magnitnom pole”, Fizika plazmy, 15:5 (1989), 631–634

[43] A. I. Neishtadt, B. A. Petrovichev, A. A. Chernikov, “O zakhvate chastits v rezhim neogranichennogo uskoreniya”, Fizika plazmy, 15:8 (1989), 1021–1024

[44] A. A. Chernikov, G. Schmidt, A. I. Neishtadt, “Unlimited particle acceleration by waves in a magnetic field”, Phys. Rev. Lett., 68:10 (1992), 1507–1510 | DOI

[45] A. P. Itin, A. I. Neishtadt, A. A. Vasiliev, “Captures into resonance and scattering on resonance in dynamics of a charged relativistic particle in magnetic field and electrostatic wave”, Phys. D, 141:3-4 (2000), 281–296 | DOI | MR | Zbl

[46] A. P. Itin, “Zakhvaty v rezonans i rasseyanie na rezonanse v dinamike relyativistskoi zaryazhennoi chastitsy v magnitnom pole i elektromagnitnoi volne”, Fizika plazmy, 28:7 (2002), 639–650

[47] A. I. Neishtadt, A. V. Artemev, L. M. Zelënyi, D. L. Vainshtein, “Serfotronnoe uskorenie v elektromagnitnykh volnakh s maloi fazovoi skorostyu”, Pisma v ZhETF, 89:9 (2009), 528–534

[48] A. V. Artemyev, A. I. Neishtadt, L. M. Zelenyi, D. L. Vainchtein, “Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves”, Chaos, 20:4 (2010), 043128, 13 pp. | DOI | MR

[49] A. I. Neishtadt, A. A. Vasiliev, A. V. Artemyev, “Resonance-induced surfatron acceleration of a relativistic particle”, Mosc. Math. J., 11:3 (2011), 531–545 | MR | Zbl

[50] A. Vasiliev, A. Neishtadt, A. Artemyev, “Nonlinear dynamics of charged particles in an oblique electromagnetic wave”, Phys. Lett. A, 375:34 (2011), 3075–3079 | DOI | Zbl

[51] R. Z. Sagdeev, “Kollektivnye protsessy i udarnye volny v razrezhennoi plazme”, Voprosy teorii plazmy, vyp. 4, ed. M. A. Leontovich, Atomizdat, M., 1966, 20–80

[52] R. Z. Sagdeev, V. D. Shapiro, “Vliyanie poperechnogo magnitnogo polya na zatukhanie Landau”, Pisma v ZhETF, 17 (1973), 389–394

[53] T. Katsouleas, J. M. Dawson, “Unlimited electron acceleration in laser-driven plasma waves”, Phys. Rev. Lett., 51:5 (1983), 392–395 | DOI

[54] G. Wolansky, “Limit theorem for a dynamical system in the presence of resonances and homoclinic orbits”, J. Differential Equations, 83:2 (1990), 300–335 | DOI | MR | Zbl

[55] M. I. Freidlin, “Random and deterministic perturbations of nonlinear oscillators”, Proceedings of the International Congress of Mathematicians (Berlin, 1998), v. III, Doc. Math., Extra Vol. III, 1998, 223–235 (electronic) | MR | Zbl

[56] J. D. Brothers, R. Haberman, “Slow passage through a homoclinic orbit with subharmonic resonances”, Stud. Appl. Math., 101:2 (1998), 211–232 | DOI | MR | Zbl

[57] I. M. Operchuk, Issledovanie statisticheskikh svoistv mnogokratnykh prokhozhdenii cherez rezonans, Diplomnaya rabota, MGU, M., 2003

[58] A. I. Neishtadt, “O veroyatnostnykh yavleniyakh v vozmuschennykh sistemakh”, Matematika i modelirovanie, eds. A. D. Bazykin, Yu. G. Zarkhin, NTsBI AN SSSR, Puschino, 1990, 141–155 ; A. I. Neĭshtadt, “On probabilistic phenomena in perturbed systems”, Selecta Math. Soviet., 12:3 (1993), 195–210 | MR | Zbl | MR | Zbl

[59] T. Kasuga, “On the adiabatic theorem for the Hamiltonian system of differential equations in the classical mechanics. I”, Proc. Japan Acad., 37:7 (1961), 366–371 ; “II”, 372–376 ; “III”, 377–382 | DOI | MR | Zbl | DOI | MR | DOI | MR

[60] Yu. Kifer, “Averaging principle for fully coupled dynamical systems and large deviations”, Ergodic Theory Dynam. Systems, 24:3 (2004), 847–871 | DOI | MR | Zbl

[61] V. I. Bakhtin, “Ob usrednenii v mnogochastotnykh sistemakh”, Funkts. analiz i ego pril., 20:2 (1986), 1–7 | MR | Zbl

[62] M. M. Dodson, B. P. Rynne, J. A. G. Vickers, “Averaging in multifrequency systems”, Nonlinearity, 2:1 (1989), 137–148 | DOI | MR | Zbl

[63] N. N. Nekhoroshev, “Eksponentsialnaya otsenka vremeni ustoichivosti gamiltonovykh sistem, blizkikh k integriruemym”, UMN, 32:6(198) (1977), 5–66 | MR | Zbl

[64] A. I. Neishtadt, “O razdelenii dvizhenii v sistemakh s bystro vraschayuscheisya fazoi”, Prikl. matem. i mekh., 48:2 (1984), 197–204 | MR | Zbl

[65] A. I. Neishtadt, “On averaging in two-frequency systems with small Hamiltonian and much smaller non-Hamiltonian perturbations”, Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday, Mosc. Math. J., 3:3 (2003), 1039–1052 | MR | Zbl