@article{RM_2014_69_5_a0,
author = {A. I. Neishtadt},
title = {Averaging, passage through resonances, and~capture into resonance in two-frequency systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {771--843},
year = {2014},
volume = {69},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_5_a0/}
}
TY - JOUR AU - A. I. Neishtadt TI - Averaging, passage through resonances, and capture into resonance in two-frequency systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 771 EP - 843 VL - 69 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2014_69_5_a0/ LA - en ID - RM_2014_69_5_a0 ER -
A. I. Neishtadt. Averaging, passage through resonances, and capture into resonance in two-frequency systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 5, pp. 771-843. http://geodesic.mathdoc.fr/item/RM_2014_69_5_a0/
[1] D. V. Anosov, “Osrednenie v sistemakh obyknovennykh differentsialnykh uravnenii s bystrokoleblyuschimisya resheniyami”, Izv. AN SSSR. Ser. matem., 24:5 (1960), 721–742 | MR | Zbl
[2] P. Fatou, “Sur le mouvement d'un système soumis à des forces à courte période”, Bull. Soc. Math. France, 56 (1928), 98–139 | MR | Zbl
[3] N. N. Bogolyubov, O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN USSR, Lvov, 1945, 140 pp. | MR | Zbl
[4] P. Goldreich, S. Peale, “Spin-orbit coupling in the solar system”, Astronom. J., 71:6 (1966), 425–438 | DOI
[5] A. M. Molchanov, “The resonant structure of the solar system: The law of planetary distances”, Icarus, 8:1-3 (1968), 203–215 | DOI
[6] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978, 304 pp. ; V. Arnol'd, Geometrical methods in the theory of ordinary differential equations, Grundlehren Math. Wiss., 250, Springer-Verlag, New York, 1988, xiv+351 pp. | MR | Zbl | DOI | MR | Zbl
[7] P. A. M. Dirac, “The adiabatic invariance of the quantum integrals”, Proc. Roy. Soc. Lond. A, 107 (1925), 725–734 | DOI | Zbl
[8] J. M. Burgers, “Adiabatic invariants of mechanical systems, I, II, III”, Proc. Roy. Acad. Amsterdam, 20 (1917/1918), 149–169
[9] V. I. Arnold, “Usloviya primenimosti i otsenka pogreshnosti metoda usredneniya dlya sistem, kotorye v protsesse evolyutsii prokhodyat cherez rezonansy”, Dokl. AN SSSR, 161:1 (1965), 9–12 | MR | Zbl
[10] A. I. Neishtadt, “O prokhozhdenii cherez rezonansy v dvukhchastotnoi zadache”, Dokl. AN SSSR, 221:2 (1975), 301–304 | MR | Zbl
[11] B. V. Chirikov, “Prokhozhdenie nelineinoi kolebatelnoi sistemy cherez rezonans”, Dokl. AN SSSR, 125:5 (1959), 1015–1018 | MR | Zbl
[12] V. K. Melnikov, “Ob ustoichivosti tsentra pri periodicheskikh po vremeni vozmuscheniyakh”, Tr. MMO, 12, GIFML, M., 1963, 3–52 | MR | Zbl
[13] J. Kevorkian, “On a model for reentry roll resonance”, SIAM J. Appl. Math., 26:3 (1974), 638–669 | DOI | Zbl
[14] A. D. Morozov, “O polnom kachestvennom issledovanii uravneniya Dyuffinga”, Differents. uravneniya, 12:2 (1976), 241–255 | MR | Zbl
[15] J. Murdock, “Qualitative theory of nonlinear resonance by averaging and dynamical systems methods”, Dynamics Reported, 1, Wiley, Chichester, 1988, 91–172 | DOI | MR | Zbl
[16] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, 2-e izd., Editorial URSS, M., 2002, 416 pp.; V. I. Arnol'd, V. V. Kozlov, A. I. Neishtadt, “Mathematical aspects of classical and celestial mechanics”, Dynamical systems, III, Encyclopaedia Math. Sci., 3, Springer-Verlag, Berlin, 2006, xiv+518 pp. | MR
[17] В J. A. Sanders, F. Verhulst, J. Murdock, Averaging methods in В nonlinear dynamical systems, Appl. Math. Sci., 59, 2nd ed., Springer-Verlag, New York, 2007, xxii+431 pp. | MR | Zbl
[18] P. Lochak, C. Meunier, Multiphase averaging for classical systems. With applications to adiabatic theorems, Appl. Math. Sci., 72, Springer-Verlag, New York, 1988, xii+360 pp. | DOI | MR | Zbl
[19] A. I. Neishtadt, O nekotorykh rezonansnykh zadachakh v nelineinykh sistemakh, Diss. ... kand. fiz.-matem. nauk, MGU, M., 1975
[20] A. I. Neishtadt, “Ob osrednenii v mnogochastotnykh sistemakh. II”, Dokl. AN SSSR, 226:6 (1976), 1295–1298 | MR | Zbl
[21] V. I. Arnold, Nekotorye zadachi teorii differentsialnykh uravnenii, Tezisy lektsii, M., 1974
[22] V. I. Arnold, Zadachi Arnolda, Fazis, M., 2000, x+452 pp. | MR | Zbl
[23] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, 4-e izd., Nauka, M., 1974, 504 pp. ; N. N. Bogolyubov, J. A. Mitropol'skij, Asymptotic methods in the theory of non-linear oscillations, Hindustan Publ. Corp., Delhi; Gordon and Breach Sci. Publ., New York, 1961, x+537 pp. | MR | Zbl | Zbl
[24] V. I. Arnold, “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6(114) (1963), 91–192 | MR | Zbl
[25] M. M. Khapaev, “Ob osrednenii v mnogochastotnykh sistemakh”, Dokl. AN SSSR, 217:5 (1974), 1021–1024 | MR | Zbl
[26] A. I. Neishtadt, Estimates of some integrals related to variations of smooth functions, 2012 (v2 – 2014), 7 pp., arXiv: 1209.5095
[27] V. E. Pronchatov, “Ob otsenke pogreshnosti metoda usredneniya v dvukhchastotnoi zadache”, Matem. sb., 134(176):1(9) (1987), 28–41 ; V. E. Pronchatov, “On an error estimate for the averaging method in a two-frequency problem”, Math. USSR-Sb., 62:1 (1989), 29–40 | MR | Zbl | DOI
[28] V. I. Bakhtin, “Nekotorye voprosy teorii usredneniya”, v state “Sovmestnye zasedaniya seminara imeni I. G. Petrovskogo po differentsialnym uravneniyam i matematicheskim problemam fiziki i Moskovskogo matematicheskogo obschestva (devyataya sessiya, 20–23 yanvarya 1986 g.)”, UMN, 41:4 (1986), 205
[29] V. I. Bakhtin, “Usrednenie v odnochastotnoi sisteme obschego polozheniya”, Differents. uravneniya, 27:9 (1991), 1493–1505 | MR | Zbl
[30] R. Haberman, “Energy bounds for the slow capture by a center in sustained resonance”, SIAM J. Appl. Math., 43:2 (1983), 244–256 | DOI | MR | Zbl
[31] C. Robinson, “Sustained resonance for a nonlinear system with slowly varying coefficients”, SIAM J. Math. Anal., 14:5 (1983), 847–860 | DOI | MR | Zbl
[32] W. L. Kath, “Necessary conditions for sustained reentry roll resonance”, SIAM J. Appl. Math., 43:2 (1983), 314–324 | DOI | MR | Zbl
[33] A. I. Neĭshtadt, “Averaging, capture into resonances, and chaos in nonlinear systems”, Chaos/Xaoc (Woods Hole, MA, 1989), Amer. Inst. Phys., New York, 1990, 261–273 | MR
[34] N. Fenichel, “Geometric singular perturbation theory for ordinary differential equations”, J. Differential Equations, 31:1 (1979), 53–98 | DOI | MR | Zbl
[35] D. Dolgopyat, “Repulsion from resonances”, Mém. Soc. Math. France (N. S.), 128 (2012), 119 pp. | MR | Zbl
[36] I. M. Lifshits, A. A. Slutskin, V. M. Nabutovskii, “O yavlenii rasseyaniya zaryazhennykh kvazichastits na osobykh tochkakh v $p$-prostranstve”, Dokl. AN SSSR, 137:3 (1961), 553–556 | MR
[37] A. I. Neishtadt, “On destruction of adiabatic invariants in multi-frequency systems”, International conference on differential equations (Barcelona, 1991), v. 1, 2, eds. Perelló C., Simó C., Solà-Morales J., World Sci. Publ., River Edge, NJ, 1993, 195–207 | MR | Zbl
[38] A. I. Neishtadt, “On adiabatic invariance in two-frequency systems”, Hamiltonian systems with three or more degrees of freedom (S'Agaró, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533, ed. Simó C., Kluwer Acad. Publ., Dordrecht, 1999, 193–212 | MR | Zbl
[39] A. I. Neishtadt, “Zakhvat v rezonans i rasseyanie na rezonansakh v dvukhchastotnykh sistemakh”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 250, Nauka, M., 2005, 198–218 | MR | Zbl
[40] L. A. Artsimovich, R. Z. Sagdeev, Fizika plazmy dlya fizikov, Atomizdat, M., 1979, 313 pp.
[41] N. N. Bogolyubov, D. N. Zubarev, “Metod asimptoticheskogo priblizheniya dlya sistem s vraschayuscheisya fazoi i ego primenenie k dvizheniyu zaryazhennykh chastits v magnitnom pole”, Ukr. matem. zhurn., 7:1 (1955), 5–17 | MR | Zbl
[42] G. M. Zaslavskii, A. I. Neishtadt, B. A. Petrovichev, R. Z. Sagdeev, “Mekhanizm usileniya diffuzii pri vzaimodeistvii volna–chastitsa v slabom magnitnom pole”, Fizika plazmy, 15:5 (1989), 631–634
[43] A. I. Neishtadt, B. A. Petrovichev, A. A. Chernikov, “O zakhvate chastits v rezhim neogranichennogo uskoreniya”, Fizika plazmy, 15:8 (1989), 1021–1024
[44] A. A. Chernikov, G. Schmidt, A. I. Neishtadt, “Unlimited particle acceleration by waves in a magnetic field”, Phys. Rev. Lett., 68:10 (1992), 1507–1510 | DOI
[45] A. P. Itin, A. I. Neishtadt, A. A. Vasiliev, “Captures into resonance and scattering on resonance in dynamics of a charged relativistic particle in magnetic field and electrostatic wave”, Phys. D, 141:3-4 (2000), 281–296 | DOI | MR | Zbl
[46] A. P. Itin, “Zakhvaty v rezonans i rasseyanie na rezonanse v dinamike relyativistskoi zaryazhennoi chastitsy v magnitnom pole i elektromagnitnoi volne”, Fizika plazmy, 28:7 (2002), 639–650
[47] A. I. Neishtadt, A. V. Artemev, L. M. Zelënyi, D. L. Vainshtein, “Serfotronnoe uskorenie v elektromagnitnykh volnakh s maloi fazovoi skorostyu”, Pisma v ZhETF, 89:9 (2009), 528–534
[48] A. V. Artemyev, A. I. Neishtadt, L. M. Zelenyi, D. L. Vainchtein, “Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves”, Chaos, 20:4 (2010), 043128, 13 pp. | DOI | MR
[49] A. I. Neishtadt, A. A. Vasiliev, A. V. Artemyev, “Resonance-induced surfatron acceleration of a relativistic particle”, Mosc. Math. J., 11:3 (2011), 531–545 | MR | Zbl
[50] A. Vasiliev, A. Neishtadt, A. Artemyev, “Nonlinear dynamics of charged particles in an oblique electromagnetic wave”, Phys. Lett. A, 375:34 (2011), 3075–3079 | DOI | Zbl
[51] R. Z. Sagdeev, “Kollektivnye protsessy i udarnye volny v razrezhennoi plazme”, Voprosy teorii plazmy, vyp. 4, ed. M. A. Leontovich, Atomizdat, M., 1966, 20–80
[52] R. Z. Sagdeev, V. D. Shapiro, “Vliyanie poperechnogo magnitnogo polya na zatukhanie Landau”, Pisma v ZhETF, 17 (1973), 389–394
[53] T. Katsouleas, J. M. Dawson, “Unlimited electron acceleration in laser-driven plasma waves”, Phys. Rev. Lett., 51:5 (1983), 392–395 | DOI
[54] G. Wolansky, “Limit theorem for a dynamical system in the presence of resonances and homoclinic orbits”, J. Differential Equations, 83:2 (1990), 300–335 | DOI | MR | Zbl
[55] M. I. Freidlin, “Random and deterministic perturbations of nonlinear oscillators”, Proceedings of the International Congress of Mathematicians (Berlin, 1998), v. III, Doc. Math., Extra Vol. III, 1998, 223–235 (electronic) | MR | Zbl
[56] J. D. Brothers, R. Haberman, “Slow passage through a homoclinic orbit with subharmonic resonances”, Stud. Appl. Math., 101:2 (1998), 211–232 | DOI | MR | Zbl
[57] I. M. Operchuk, Issledovanie statisticheskikh svoistv mnogokratnykh prokhozhdenii cherez rezonans, Diplomnaya rabota, MGU, M., 2003
[58] A. I. Neishtadt, “O veroyatnostnykh yavleniyakh v vozmuschennykh sistemakh”, Matematika i modelirovanie, eds. A. D. Bazykin, Yu. G. Zarkhin, NTsBI AN SSSR, Puschino, 1990, 141–155 ; A. I. Neĭshtadt, “On probabilistic phenomena in perturbed systems”, Selecta Math. Soviet., 12:3 (1993), 195–210 | MR | Zbl | MR | Zbl
[59] T. Kasuga, “On the adiabatic theorem for the Hamiltonian system of differential equations in the classical mechanics. I”, Proc. Japan Acad., 37:7 (1961), 366–371 ; “II”, 372–376 ; “III”, 377–382 | DOI | MR | Zbl | DOI | MR | DOI | MR
[60] Yu. Kifer, “Averaging principle for fully coupled dynamical systems and large deviations”, Ergodic Theory Dynam. Systems, 24:3 (2004), 847–871 | DOI | MR | Zbl
[61] V. I. Bakhtin, “Ob usrednenii v mnogochastotnykh sistemakh”, Funkts. analiz i ego pril., 20:2 (1986), 1–7 | MR | Zbl
[62] M. M. Dodson, B. P. Rynne, J. A. G. Vickers, “Averaging in multifrequency systems”, Nonlinearity, 2:1 (1989), 137–148 | DOI | MR | Zbl
[63] N. N. Nekhoroshev, “Eksponentsialnaya otsenka vremeni ustoichivosti gamiltonovykh sistem, blizkikh k integriruemym”, UMN, 32:6(198) (1977), 5–66 | MR | Zbl
[64] A. I. Neishtadt, “O razdelenii dvizhenii v sistemakh s bystro vraschayuscheisya fazoi”, Prikl. matem. i mekh., 48:2 (1984), 197–204 | MR | Zbl
[65] A. I. Neishtadt, “On averaging in two-frequency systems with small Hamiltonian and much smaller non-Hamiltonian perturbations”, Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday, Mosc. Math. J., 3:3 (2003), 1039–1052 | MR | Zbl