Isotropic Markov semigroups on ultra-metric spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 4, pp. 589-680 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(X,d)$ be a separable ultra-metric space with compact balls. Given a reference measure $\mu $ on $X$ and a distance distribution function $\sigma$ on $[0,\infty)$, a symmetric Markov semigroup $\{P^{t}\}_{t\geqslant 0}$ acting in $L^{2}(X,\mu )$ is constructed. Let $\{\mathcal{X}_{t}\}$ be the corresponding Markov process. The authors obtain upper and lower bounds for its transition density and its Green function, give a transience criterion, estimate its moments, and describe the Markov generator $\mathcal{L}$ and its spectrum, which is pure point. In the particular case when $X=\mathbb{Q}_{p}^{n}$, where $\mathbb{Q}_{p}$ is the field of $p$-adic numbers, the construction recovers the Taibleson Laplacian (spectral multiplier), and one can also apply the theory to the study of the Vladimirov Laplacian. Even in this well-established setting, several of the results are new. The paper also describes the relation between the processes involved and Kigami's jump processes on the boundary of a tree which are induced by a random walk. In conclusion, examples illustrating the interplay between the fractional derivatives and random walks are provided. Bibliography: 66 titles.
Keywords: ultra-metric measure space, metric trees, isotropic Markov semigroups, Markov generators, heat kernels, transition density, $p$-number field, Vladimirov–Taibleson operator, nearest neighbour random walk on a tree, Dirichlet form, harmonic functions with finite energy, traces of harmonic functions with finite energy.
@article{RM_2014_69_4_a0,
     author = {A. D. Bendikov and A. A. Grigor'yan and Ch. Pittet and W. Woess},
     title = {Isotropic {Markov} semigroups on ultra-metric spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {589--680},
     year = {2014},
     volume = {69},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_4_a0/}
}
TY  - JOUR
AU  - A. D. Bendikov
AU  - A. A. Grigor'yan
AU  - Ch. Pittet
AU  - W. Woess
TI  - Isotropic Markov semigroups on ultra-metric spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 589
EP  - 680
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_4_a0/
LA  - en
ID  - RM_2014_69_4_a0
ER  - 
%0 Journal Article
%A A. D. Bendikov
%A A. A. Grigor'yan
%A Ch. Pittet
%A W. Woess
%T Isotropic Markov semigroups on ultra-metric spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 589-680
%V 69
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2014_69_4_a0/
%G en
%F RM_2014_69_4_a0
A. D. Bendikov; A. A. Grigor'yan; Ch. Pittet; W. Woess. Isotropic Markov semigroups on ultra-metric spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 4, pp. 589-680. http://geodesic.mathdoc.fr/item/RM_2014_69_4_a0/

[1] S. Albeverio, W. Karwowski, “Diffusion on $p$-adic numbers”, Gaussian random fields (Nagoya, 1990), Ser. Probab. Statist., 1, World Sci. Publ., River Edge, NJ, 1991, 86–99 | MR | Zbl

[2] S. Albeverio, W. Karwowski, “A random walk on $p$-adics – the generator and its spectrum”, Stochastic Process. Appl., 53:1 (1994), 1–22 | DOI | MR | Zbl

[3] S. Albeverio, X. Zhao, “On the relation between different constructions of random walks on $p$-adics”, Markov Process. Related Fields, 6:2 (2000), 239–255 | MR | Zbl

[4] D. Aldous, S. N. Evans, “Dirichlet forms on totally disconnected spaces and bipartite Markov chains”, J. Theoret. Probab., 12:3 (1999), 839–857 | DOI | MR | Zbl

[5] A. Bendikov, B. Bobikau, Ch. Pittet, “Some spectral and geometric aspects of countable groups”, Random walks, boundaries and spectra, Progr. Probab., 64, Birkhäuser/Springer Basel AG, Basel, 2011, 227–234 | DOI | MR | Zbl

[6] A. Bendikov, B. Bobikau, Ch. Pittet, “Spectral properties of a class of random walks on locally finite groups”, Groups Geom. Dyn., 7:4 (2013), 791–820 | DOI | MR | Zbl

[7] A. Bendikov, A. Grigor'yan, Ch. Pittet, “On a class of Markov semigroups on discrete ultra-metric spaces”, Potential Anal., 37:2 (2012), 125–169 | DOI | MR | Zbl

[8] A. Bendikov, P. Krupski, “On the spectrum of the hierarchical Laplacian”, Potential Anal., 2014 (to appear) ; 2013, 27 pp., arXiv: 1308.4883v2 | DOI

[9] A. Bendikov, L. Saloff-Coste, Random walks on some countable groups, preprint, 2011

[10] C. Berg, G. Forst, Potential theory on locally compact abelian groups, Ergeb. Math. Grenzgeb., 87, Springer-Verlag, New York–Heidelberg, 1975, vii+197 pp. | MR | Zbl

[11] S. Brofferio, W. Woess, “On transience of card shuffling”, Proc. Amer. Math. Soc., 129:5 (2001), 1513–1519 | DOI | MR | Zbl

[12] P. Cartier, “Fonctions harmoniques sur un arbre”, Convegno di Calcolo delle Probabilità (INDAM, Rome, 1971), Symposia Mathematica, 9, Academic Press, London, 1972, 203–270 | MR | Zbl

[13] D. I. Cartwright, “Random walks on direct sums of discrete groups”, J. Theoret. Probab., 1:4 (1988), 341–356 | DOI | MR | Zbl

[14] D. I. Cartwright, P. M. Soardi, W. Woess, “Martin and end compactifications of nonlocally finite graphs”, Trans. Amer. Math. Soc., 338:2 (1993), 679–693 | MR | Zbl

[15] Z.-Q. Chen, M. Fukushima, J. Ying, “Traces of symmetric Markov processes and their characterizations”, Ann. Probab., 34:3 (2006), 1052–1102 | DOI | MR | Zbl

[16] T. Coulhon, A. Grigor'yan, Ch. Pittet, “A geometric approach to on-diagonal heat kernel low bounds on groups”, Ann. Inst. Fourier (Grenoble), 51:6 (2001), 1763–1827 | DOI | MR | Zbl

[17] D. A. Darling, P. Erdős, “On the recurrence of a certain chain”, Proc. Amer. Math. Soc., 19:2 (1968), 336–338 | DOI | MR | Zbl

[18] C. Dellacherie, S. Martínez, J. San Martín, “Ultrametric matrices and induced Markov chains”, Adv. in Appl. Math., 17:2 (1996), 169–183 | DOI | MR | Zbl

[19] C. Dellacherie, S. Martínez, J. San Martín, “Ultrametric and tree potential”, J. Theoret. Probab., 22:2 (2009), 311–347 | DOI | MR | Zbl

[20] J. L. Doob, “Boundary properties for functions with finite Dirichlet integrals”, Ann. Inst. Fourier (Grenoble), 12 (1962), 573–621 | DOI | MR | Zbl

[21] J. Douglas, “Solution of the problem of Plateau”, Trans. Amer. Math. Soc., 33:1 (1931), 263–321 | DOI | MR | Zbl

[22] S. N. Evans, “Local properties of Lévy processes on a totally disconnected group”, J. Theoret. Probab., 2:2 (1989), 209–259 | DOI | MR | Zbl

[23] S. N. Evans, “Local field Brownian motion”, J. Theoret. Probab., 6:4 (1993), 817–850 | DOI | MR | Zbl

[24] S. N. Evans, “Local fields, Gaussian measures, and Brownian motions”, Topics in probability and Lie groups: boundary theory, CRM Proc. Lecture Notes, 28, Amer. Math. Soc., Providence, RI, 2001, 11–50 | MR | Zbl

[25] N. Fereig, S. A. Molchanov, “Random walks on abelian groups with an infinite number of generators”, Moscow Univ. Math. Bull., 33:5 (1978), 17–23 | MR | Zbl

[26] L. Flatto, J. Pitt, “Recurrence criteria for random walks on countable Abelian groups”, Illinois J. Math., 18:1 (1974), 1–19 | MR | Zbl

[27] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter Stud. Math., 19, 2nd ed., Walter de Gruyter Co., Berlin, 2011, x+489 pp. | MR | Zbl

[28] M. Gromov, “Asymptotic invariants of infinite groups”, Geometric group theory (Sussex, 1991), v. 2, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993, 1–295 | MR | Zbl

[29] S. Haran, “Riesz potentials and explicit sums in arithmetic”, Invent. Math., 101:1 (1990), 697–703 | DOI | MR | Zbl

[30] S. Haran, “Analytic potential theory over the $p$-adics”, Ann. Inst. Fourier (Grenoble), 43:4 (1993), 905–944 | DOI | MR | Zbl

[31] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. 1, Grundlehren Math. Wiss., 115, Structure of topological groups, integration theory, group representations, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963, viii+519 pp. | MR | Zbl

[32] B. Hughes, “Trees and ultrametric spaces: a categorical equivalence”, Adv. Math., 189:1 (2004), 148–191 | DOI | MR | Zbl

[33] R. S. Ismagilov, “On the spectrum of a self-adjoint operator in $L_2(K)$, where $K$ is a local field; an analogue of the Feynman–Kac formula”, Theoret. and Math. Phys., 89:1 (1991), 1024–1028 | DOI | MR | Zbl

[34] M. A. Kasymdzhanova, “Recurrence of invariant Markov chains on a class of abelian groups”, Moscow Univ. Math. Bull., 36:3 (1981), 1–6 | MR | Zbl

[35] H. Kesten, F. Spitzer, “Random walks on countably infinite Abelian groups”, Acta Math., 114:1 (1965), 237–265 | DOI | MR | Zbl

[36] J. Kigami, “Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees”, Adv. Math., 225:5 (2010), 2674–2730 | DOI | MR | Zbl

[37] J. Kigami, “Transitions on a noncompact Cantor set and random walks on its defining tree”, Ann. Inst. Henri Poincaré Probab. Statist., 49:4 (2013), 1090–1129 | DOI | MR | Zbl

[38] A. N. Kochubeĭ, “Parabolic equations over the field of $p$-adic numbers”, Math. USSR-Izv., 39:3 (1992), 1263–1280 | DOI | MR | Zbl

[39] A. N. Kochubei, Pseudo-differential equations and stochastics over non-Archimedean fields, Monogr. Textbooks Pure Appl. Math., 244, Marcel Dekker Inc., New York, 2001, xii+316 pp. | MR | Zbl

[40] G. F. Lawler, “Recurrence and transience for a card shuffling model”, Combin. Probab. Comput., 4:2 (1995), 133–142 | DOI | MR | Zbl

[41] S. Martínez, D. Remenik, J. San Martín, “Level-wise approximation of a Markov process associated to the boundary of an infinite tree”, J. Theoret. Probab., 20:3 (2007), 561–579 | DOI | MR | Zbl

[42] M. Del Muto, A. Figà-Talamanca, “Diffusion on locally compact ultrametric spaces”, Expo. Math., 22:3 (2004), 197–211 | DOI | MR | Zbl

[43] M. Del Muto, A. Figà-Talamanca, “Anisotropic diffusion on totally disconnected abelian groups”, Pacific J. Math., 225:2 (2006), 221–229 | DOI | MR | Zbl

[44] L. Naïm, “Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel”, Ann. Inst. Fourier (Grenoble), 7 (1957), 183–281 | DOI | MR | Zbl

[45] J. Pearson, J. Bellissard, “Noncommutative Riemannian geometry and diffusion on ultrametric Cantor sets”, J. Noncommut. Geom., 3:3 (2009), 447–480 | DOI | MR | Zbl

[46] Ch. Pittet, L. Saloff-Coste, “Amenable groups, isoperimetric profiles and random walks”, Geometric group theory down under (Canberra, 1996), de Gruyter, Berlin, 1999, 293–316 | MR | Zbl

[47] Ch. Pittet, L. Saloff-Coste, “On the stability of the behavior of random walks on groups”, J. Geom. Anal., 10:4 (2000), 713–737 | DOI | MR | Zbl

[48] C. Pittet, L. Saloff-Coste, “On random walks on wreath products”, Ann. Probab., 30:2 (2002), 948–977 | DOI | MR | Zbl

[49] R. Rammal, G. Toulouse, M. A. Virasoro, “Ultrametricity for physicists”, Rev. Modern Phys., 58:3 (1986), 765–788 | DOI | MR

[50] J. J. Rodríguez-Vega, W. A. Zúñiga-Galindo, “Taibleson operators, $p$-adic parabolic equations and ultrametric diffusion”, Pacific J. Math., 237:2 (2008), 327–347 | DOI | MR | Zbl

[51] L. Saloff-Coste, “Opérateurs pseudo-différentiels sur certains groupes totalement discontinus”, Studia Math., 83:3 (1986), 205–228 | MR | Zbl

[52] L. Saloff-Coste, “Probability on groups: random walks and invariant diffusions”, Notices Amer. Math. Soc., 48:9 (2001), 968–977 | MR | Zbl

[53] R. L. Schilling, R. Song, Z. Vondraček, Bernstein functions. Theory and applications, de Gruyter Stud. Math., 37, 2nd ed., Walter de Gruyter Co., Berlin, 2012, xiv+410 pp. | MR | Zbl

[54] P. M. Soardi, Potential theory on infinite networks, Lecture Notes in Math., 1590, Springer-Verlag, Berlin, 1994, viii+187 pp. | DOI | MR | Zbl

[55] M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1975, xii+294 pp. | MR | Zbl

[56] N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Math., 100, Cambridge Univ. Press, Cambridge, 1992, xii+156 pp. | MR | Zbl

[57] V. S. Vladimirov, “Generalized functions over the field of $p$-adic numbers”, Russian Math. Surveys, 43:5 (1988), 19–64 | DOI | MR | Zbl

[58] V. S. Vladimirov, I. V. Volovich, “$P$-adic Schrödinger-type equation”, Lett. Math. Phys., 18:1 (1989), 43–53 | DOI | MR | Zbl

[59] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Sci. Publ., River Edge, NJ, 1994, xx+319 pp. | MR | Zbl

[60] Z. Vondraček, “A characterization of {M}arkov chains on infinite graphs by limiting distributions”, Arch. Math. (Basel), 65:5 (1995), 449–460 | DOI | MR | Zbl

[61] W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Math., 138, Cambridge Univ. Press, Cambridge, 2000, xii+334 pp. | DOI | MR | Zbl

[62] W. Woess, “Lamplighters, Diestel–Leader graphs, random walks, and harmonic functions”, Combin. Probab. Comput., 14:3 (2005), 415–433 | DOI | MR | Zbl

[63] W. Woess, Denumerable Markov chains. Generating functions, boundary theory, random walks on trees, EMS Textbk. Math., Eur. Math. Soc., Zürich, 2009, xviii+351 pp. | DOI | MR | Zbl

[64] W. Woess, On the duality between jump processes on ultrametric spaces and random walks on trees, 2012, 24 pp., arXiv: 1211.7216

[65] M. Yamasaki, “Discrete potentials on an infinite network”, Mem. Fac. Sci. Shimane Univ., 13 (1979), 31–44 | MR | Zbl

[66] W. A. Zúñiga-Galindo, “Parabolic equations and Markov processes over $p$-adic fields”, Potential Anal., 28:2 (2008), 185–200 | DOI | MR | Zbl