Isotropic Markov semigroups on ultra-metric spaces
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 4, pp. 589-680
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $(X,d)$ be a separable ultra-metric space with compact balls. Given a reference measure $\mu $ on $X$ and a distance distribution function $\sigma$ on $[0,\infty)$, a symmetric Markov semigroup $\{P^{t}\}_{t\geqslant 0}$ acting in $L^{2}(X,\mu )$ is constructed. Let $\{\mathcal{X}_{t}\}$ be the corresponding Markov process. The authors obtain upper and lower bounds for its transition density and its Green function, give a transience criterion, estimate its moments, and describe the Markov generator $\mathcal{L}$ and its spectrum, which is pure point. In the particular case when $X=\mathbb{Q}_{p}^{n}$, where $\mathbb{Q}_{p}$ is the field of $p$-adic numbers, the construction recovers the Taibleson Laplacian (spectral multiplier), and one can also apply the theory to the study of the Vladimirov Laplacian. Even in this well-established setting, several of the results are new. The paper also describes the relation between the processes involved and Kigami's jump processes on the boundary of a tree which are induced by a random walk. In conclusion, examples illustrating the interplay between the fractional derivatives and random walks are provided.
Bibliography: 66 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
ultra-metric measure space, metric trees, isotropic Markov semigroups, Markov generators, heat kernels, transition density, $p$-number field, Vladimirov–Taibleson operator, nearest neighbour random walk on a tree, Dirichlet form, harmonic functions with finite energy, traces of harmonic functions with finite energy.
                    
                    
                    
                  
                
                
                @article{RM_2014_69_4_a0,
     author = {A. D. Bendikov and A. A. Grigor'yan and Ch. Pittet and W. Woess},
     title = {Isotropic {Markov} semigroups on ultra-metric spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {589--680},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_4_a0/}
}
                      
                      
                    TY - JOUR AU - A. D. Bendikov AU - A. A. Grigor'yan AU - Ch. Pittet AU - W. Woess TI - Isotropic Markov semigroups on ultra-metric spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 589 EP - 680 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2014_69_4_a0/ LA - en ID - RM_2014_69_4_a0 ER -
%0 Journal Article %A A. D. Bendikov %A A. A. Grigor'yan %A Ch. Pittet %A W. Woess %T Isotropic Markov semigroups on ultra-metric spaces %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 589-680 %V 69 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2014_69_4_a0/ %G en %F RM_2014_69_4_a0
A. D. Bendikov; A. A. Grigor'yan; Ch. Pittet; W. Woess. Isotropic Markov semigroups on ultra-metric spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 4, pp. 589-680. http://geodesic.mathdoc.fr/item/RM_2014_69_4_a0/
