On the solution of the optimal prediction problem for the maximum of a time-homogeneous diffusion
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 569-571
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2014_69_3_a6,
author = {A. A. Kamenov},
title = {On the solution of the optimal prediction problem for the maximum of a~time-homogeneous diffusion},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {569--571},
year = {2014},
volume = {69},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_3_a6/}
}
TY - JOUR AU - A. A. Kamenov TI - On the solution of the optimal prediction problem for the maximum of a time-homogeneous diffusion JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 569 EP - 571 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2014_69_3_a6/ LA - en ID - RM_2014_69_3_a6 ER -
A. A. Kamenov. On the solution of the optimal prediction problem for the maximum of a time-homogeneous diffusion. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 569-571. http://geodesic.mathdoc.fr/item/RM_2014_69_3_a6/
[1] M. Dai, H. Jin, Y. Zhong, X. Y. Zhou, Contemporary quantitative finance, Springer, Berlin, 2010, 317–333 | DOI | MR | Zbl
[2] P. Milgrom, I. Segal, Econometrica, 70:2 (2002), 583–601 | DOI | MR | Zbl
[3] G. Peskir, Ann. Probab., 26:4 (1998), 1614–1640 | DOI | MR | Zbl
[4] G. Peskir, A. Shiryaev, Optimal stopping and free-boundary problems, Birkhäuser, Basel, 2006, xxii+500 pp. | MR | Zbl