Non-holonomic dynamics and Poisson geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 481-538
Voir la notice de l'article provenant de la source Math-Net.Ru
This is a survey of basic facts presently known about non-linear Poisson structures in the analysis of integrable systems in non-holonomic mechanics. It is shown that by using the theory of Poisson deformations it is possible to reduce various non-holonomic systems to dynamical systems on well-understood phase spaces equipped with linear Lie–Poisson brackets. As a result, not only can different non-holonomic systems be compared, but also fairly advanced methods of Poisson geometry and topology can be used for investigating them.
Bibliography: 95 titles.
Keywords:
non-holonomic systems, Chaplygin ball, Suslov system, Veselova system.
Mots-clés : Poisson bracket
Mots-clés : Poisson bracket
@article{RM_2014_69_3_a3,
author = {A. V. Borisov and I. S. Mamaev and A. V. Tsiganov},
title = {Non-holonomic dynamics and {Poisson} geometry},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {481--538},
publisher = {mathdoc},
volume = {69},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_3_a3/}
}
TY - JOUR AU - A. V. Borisov AU - I. S. Mamaev AU - A. V. Tsiganov TI - Non-holonomic dynamics and Poisson geometry JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 481 EP - 538 VL - 69 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2014_69_3_a3/ LA - en ID - RM_2014_69_3_a3 ER -
A. V. Borisov; I. S. Mamaev; A. V. Tsiganov. Non-holonomic dynamics and Poisson geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 481-538. http://geodesic.mathdoc.fr/item/RM_2014_69_3_a3/