Non-holonomic dynamics and Poisson geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 481-538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey of basic facts presently known about non-linear Poisson structures in the analysis of integrable systems in non-holonomic mechanics. It is shown that by using the theory of Poisson deformations it is possible to reduce various non-holonomic systems to dynamical systems on well-understood phase spaces equipped with linear Lie–Poisson brackets. As a result, not only can different non-holonomic systems be compared, but also fairly advanced methods of Poisson geometry and topology can be used for investigating them. Bibliography: 95 titles.
Keywords: non-holonomic systems, Chaplygin ball, Suslov system, Veselova system.
Mots-clés : Poisson bracket
@article{RM_2014_69_3_a3,
     author = {A. V. Borisov and I. S. Mamaev and A. V. Tsiganov},
     title = {Non-holonomic dynamics and {Poisson} geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {481--538},
     year = {2014},
     volume = {69},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_3_a3/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
AU  - A. V. Tsiganov
TI  - Non-holonomic dynamics and Poisson geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 481
EP  - 538
VL  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_3_a3/
LA  - en
ID  - RM_2014_69_3_a3
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%A A. V. Tsiganov
%T Non-holonomic dynamics and Poisson geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 481-538
%V 69
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2014_69_3_a3/
%G en
%F RM_2014_69_3_a3
A. V. Borisov; I. S. Mamaev; A. V. Tsiganov. Non-holonomic dynamics and Poisson geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 481-538. http://geodesic.mathdoc.fr/item/RM_2014_69_3_a3/

[1] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization, II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl | Zbl

[2] P. Appell, Traité de mécanique rationelle, v. II, Dynamique des systèmes. Mécanique analytique, Gauthier-Villars, Paris, 1896, iv+538 pp. | Zbl

[3] P. Appell, “Sur {l}'intégration des équations du mouvement {d}'un corps pesant de révolution roulant par une arête circulaire sur un plan horizontal; cas particulier du cerceau”, Rend. Circ. Mat. Palermo, 14:1 (1900), 1–6 | DOI | Zbl

[4] V. I. Arnold, “Symplectic geometry and topology”, J. Math. Phys., 41:6 (2000), 3307–3343 | DOI | MR | Zbl

[5] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2002, 416 pp.; ДинамичРμСЃРєРёРμ СЃРёСЃС‚РμРјС‹ – 3, Р�тоги науки Рё С‚РμС...РЅРёРєРё. РЎРμСЂ. РЎРѕРІСЂРμРј. РїСЂРѕР±Р». матРμРј. Фундам. напр., 3, Р’Р�РќР�РўР�, Рњ., 1985, 5–290 ; V. I. Arnol'd, V. V. Kozlov, A. I. Neĭshtadt, “Mathematical aspects of classical and celestial mechanics”, Dynamical systems, III, Encyclopaedia Math. Sci., 3, Springer-Verlag, Berlin, 1988, 1–291 | MR | Zbl | MR

[6] P. Balseiro, L. C. García-Naranjo, “Gauge transformations, twisted Poisson brackets and Hamiltonization of nonholonomic systems”, Arch. Ration. Mech. Anal., 205:1 (2012), 267–310 | DOI | MR | Zbl

[7] L. Bates, J. Śniatycki, “Nonholonomic reduction”, Rep. Math. Phys., 32:1 (1993), 99–115 | DOI | MR | Zbl

[8] M. Batista, “The nearly horizontally rolling of a thick disk on a rough plane”, Regul. Chaotic Dyn., 13:4 (2008), 344–354 | DOI | MR | Zbl

[9] I. A. Bizayev, A. V. Tsiganov, “On the Routh sphere problem”, J. Phys. A, 46:8 (2013), 085202, 11 pp. | DOI | MR | Zbl

[10] A. M. Bloch, J. E. Marsden, D. V. Zenkov, “Nonholonomic dynamics”, Notices Amer. Math. Soc., 52:3 (2005), 324–333 | MR | Zbl

[11] S. V. Bolotin, T. V. Popova, “On the motion of a mechanical system inside a rolling ball”, Regul. Chaotic Dyn., 18:1-2 (2013), 159–165 | DOI | MR | Zbl

[12] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR

[13] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Geometrizatsiya teoremy Chaplygina o privodyaschem mnozhitele”, Nelineinaya dinam., 9:4 (2013), 627–640

[14] A. V. Bolsinov, A. A. Kilin, A. O. Kazakov, “Topologicheskaya monodromiya v negolonomnykh sistemakh”, Nelineinaya dinam., 9:2 (2013), 203–227

[15] A. V. Bolsinov, A. A. Oshemkov, “Bi-Hamiltonian structures and singularities of integrable systems”, Regul. Chaotic Dyn., 14:4-5 (2009), 431–454 ; РќРμголономныРμ динамичРμСЃРєРёРμ СЃРёСЃС‚РμРјС‹. Р�РЅС‚РμРіСЂРёСЂСѓРμмость, С...аос, странныРμ аттракторы, СЂРμРґ. Рђ. Р’. Борисов, Р�. РЎ. МамаРμРІ, Р�нститут РєРѕРјРїСЊСЋС‚РμСЂРЅС‹С... РёСЃСЃР»РμдованиРNo, Рњ.–Р�Р¶РμРІСЃРє, 2002, 67–70 | DOI | MR | Zbl | MR | Zbl

[16] A. V. Borisov, Y. N. Fedorov, “On two modified integrable problems in dynamics”, Moscow Univ. Math. Bull., 50:6 (1995), 16–18 | MR | MR | Zbl | Zbl

[17] A. V. Borisov, Y. N. Fedorov, I. S. Mamaev, “Chaplygin ball over a fixed sphere: an explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI | MR | Zbl

[18] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1-2 (2011), 104–116 | DOI | MR | Zbl

[19] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “On the model of non-holonomic billiard”, Regul. Chaotic Dyn., 16:6 (2011), 653–662 | DOI | MR | Zbl

[20] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Obobschenie preobrazovaniya Chaplygina i yavnoe integrirovanie sharovogo podvesa”, Nelineinaya dinam., 7:2 (2011), 313–338

[21] A. V. Borisov, I. S. Mamaev, Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, Biblioteka “R C Dynamics”, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999, 464 pp. | MR | Zbl

[22] A. V. Borisov, I. S. Mamaev, “Chaplygin's ball rolling problem is Hamiltonian”, Math. Notes, 70:5 (2001), 720–723 | DOI | DOI | MR | Zbl

[23] A. V. Borisov, I. S. Mamaev, “Rolling of a rigid body on plane and sphere. Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[24] A. V. Borisov, I. S. Mamaev, “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[25] A. V. Borisov, I. S. Mamaev, “The dynamics of a Chaplygin sleigh”, J. Appl. Math. Mech., 73:2 (2009), 156–161 | DOI | MR | Zbl

[26] A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328 | DOI | MR | Zbl

[27] A. V. Borisov, I. S. Mamaev, A. A. Kilin, “Rolling of a ball on a surface. New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl

[28] F. Cantrijn, J. Cortés, M. de León, D. Martín de Diego, “On the geometry of generalized Chaplygin systems”, Math. Proc. Cambridge Philos. Soc., 132:2 (2002), 323–351 | DOI | MR | Zbl

[29] S. A. Chaplygin', “O nѣkotorom' vozmozhnom' obobschenii teoremy ploschadei s' primѣneniem' k' zadachѣ o katanii sharov'”, Matem. sb., 20:1 (1897), 1–32 | Zbl

[30] S. A. Chaplygin, “On a motion of a heavy body of revolution on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 119–130 | DOI | MR | Zbl

[31] S. A. Chaplygin, “On a ball's rolling on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 131–148 | DOI | MR | Zbl | Zbl

[32] S. A. Chaplygin, “On the theory of motion of nonholonomic systems. The reducing-multiplier theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376 | DOI | MR | Zbl | Zbl

[33] R. Cushman, “Routh's sphere”, Rep. Math. Phys., 42:1-2 (1998), 47–70 | DOI | MR | Zbl

[34] R. Cushman, J. J. Duistermaat, “Non-Hamiltonian monodromy”, J. Differential Equations, 172:1 (2001), 42–58 | DOI | MR | Zbl

[35] R. Cushman, H. Duistermaat, J. Śniatycki, Geometry of nonholonomically constrained systems, Adv. Ser. Nonlinear Dynam., 26, World Scientific Publishing Co., Hackensack, NJ, 2010, xviii+404 pp. | MR | Zbl

[36] K. Ehlers, J. Koiller, R. Montgomery, P. M. Rios, “Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization”, The breadth of symplectic and Poisson geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 75–120 | DOI | MR | Zbl

[37] F. Fassò, A. Giacobbe, N. Sansonetto, “Periodic flows, rank-two Poisson structures, and nonholonomic mechanics”, Regul. Chaotic Dyn., 10:3 (2005), 267–284 | DOI | MR | Zbl

[38] Yu. N. Fedorov, “Two integrable nonholonomic systems in classical dynamics”, Moscow Univ. Math. Bull., 44:4 (1989), 7–12 | MR | Zbl

[39] Y. N. Fedorov, B. Jovanović, “Hamiltonization of the generalized Veselova LR system”, Regul. Chaotic Dyn., 14:4-5 (2009), 495–505 | DOI | MR | Zbl

[40] Y. N. Fedorov, A. J. Maciejewski, M. Przybylska, “The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions”, Nonlinearity, 22:9 (2009), 2231–2260 | DOI | MR | Zbl

[41] O. E. Fernandez, T. Mestdag, A. M. Bloch, “A generalization of Chaplygin's reducibility theorem”, Regul. Chaotic Dyn., 14:6 (2009), 635–655 | DOI | MR | Zbl

[42] E. G. Gallop, “On the rise of a spinning top”, Part 3, Proc. Cambridge Philos. Soc., 19 (1904), 356–373 | Zbl

[43] Ph. A. Griffiths, Exterior differential systems and the calculus of variations, Progr. Math., 25, Birkhäuser, Boston, MA, 1983, ix+335 pp. | MR | MR | Zbl

[44] J. Hermans, “A symmetric sphere rolling on a surface”, Nonlinearity, 8:4 (1995), 493–515 | DOI | MR | Zbl

[45] S. Hochgerner, L. García-Naranjo, “$G$-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball”, J. Geom. Mech., 1:1 (2009), 35–53 | DOI | MR | Zbl

[46] A. Ibort, M. de León, J. C. Marrero, D. Martín de Diego, “Dirac brackets in constrained dynamics”, Fortschr. Phys., 47:5 (1999), 459–492 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[47] J. H. Jellet, A treatise on the theory of friction, MacMillan and Co., London, Hodges, Foster, and Co., 1872, 220 pp. | Zbl

[48] J. Koiller, “Reduction of some classical non-holonomic systems with symmetry”, Arch. Ration. Mech. Anal., 118:2 (1992), 113–148 | DOI | MR | Zbl

[49] A. N. Kolmogorov, “On dynamical systems with an integral invariant on a torus”, Selected works of A. N. Kolmogorov, v. I, Mathematics and Its Applications, Soviet Ser., 25, Mathematics and mechanics, ed. V. M. Tikhomirov, Kluwer Acad. Publ., Dordrecht, 1991, 344–348 | MR | Zbl | Zbl

[50] D. Korteweg, “Ueber eine ziemlich verbreitete unrichtige Behandlungsweise eines Problems der rollenden Bewegung, über die Theorie dieser Bewegung und insbesondere über kleine rollende Schwingungen um eine Gleichgewichtslage”, Nieuw Archiefvoor Wiskunde, 4 (1899), 130–155

[51] V. V. Kozlov, “Dinamika sistem s neintegriruemymi svyazyami. I”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1982, no. 3, 92–100 ; II, 1982, no. 4, 70–76 ; III, 1983, no. 3, 102–111 ; IV, 1987, no. 5, 76–83 ; V, 1988, no. 6, 51–54 ; V. V. Kozlov, “The dynamics of systems with nonintegrable constraints. I”, Mosc. Univ. Mech. Bull., 47:3-4 (1982), 27–34 ; II, 37:3-4 (1982), 74–80 ; III, 38:3 (1983), 40–51 ; IV, 42:5 (1987), 40–49 ; V, 43:6 (1988), 23–29 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | Zbl | Zbl

[52] V. V. Kozlov, “Realization of nonintegrable constraints in classical mechanics”, Soviet Phys. Dokl., 28:9 (1983), 735–737 | MR | Zbl

[53] V. V. Kozlov, “On the theory of integration of the equations of nonholonomic mechanics”, Adv. in Mech., 8:3 (1985), 85–107 | MR

[54] V. V. Kozlov, “Linear systems with a quadratic integral”, J. Appl. Math. Mech., 56:6 (1992), 803–809 | DOI | MR | Zbl

[55] V. V. Kozlov, “Tensor invariants of quasihomogeneous systems of differential equations, and the Kovalevskaya–Lyapunov asymptotic method”, Math. Notes, 51:2 (1992), 138–142 | DOI | MR | Zbl

[56] V. V. Kozlov, “The Liouville property of invariant measures of completely integrable systems and the Monge–Ampère equation”, Math. Notes, 53:4 (1993), 389–393 | DOI | MR | Zbl

[57] V. V. Kozlov, Metody kachestvennogo analiza v dinamike tverdogo tela, 2-e izd., NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2000, 248 pp. ; 1-Рμ РёР·Рґ., Р�Р·Рґ-РІРѕ РњРѕСЃРє. СѓРЅ-та, Рњ., 1980, 231 СЃ. | MR | Zbl | MR | Zbl

[58] V. V. Kozlov, N. N. Kolesnikov, “On theorems of dynamics”, J. Appl. Math. Mech., 42:1 (1978), 26–31 | DOI | MR | Zbl

[59] A. D. Lewis, R. M. Murray, “Variational principles for constrained systems: theory and experiment”, Internat. J. Non-Linear Mech., 30:6 (1995), 793–815 | DOI | MR | Zbl

[60] A. Lichnerowicz, “Les variétés de Poisson et leurs algèbres de Lie associées”, J. Differential Geom., 12:2 (1977), 253–300 | MR | Zbl

[61] V. G. Marikhin, V. V. Sokolov, “O privedenii pary kvadratichnykh po impulsam gamiltonianov k kanonicheskoi forme i o veschestvennom chastichnom razdelenii peremennykh dlya volchka Klebsha”, Nelineinaya dinam., 4:3 (2008), 313–332

[62] C. M. Marle, “Various approaches to conservative and nonconservative nonholonomic systems”, Rep. Math. Phys., 42:1-2 (1998), 211–229 | DOI | MR | Zbl

[63] C.-M. Marle, “A property of conformally Hamiltonian vector fields; application to the Kepler problem”, J. Geom. Mech., 4:2 (2012), 181–206 | DOI | MR | Zbl

[64] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp. | MR | Zbl

[65] J. Moser, “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120:2 (1965), 286–294 | DOI | MR | Zbl

[66] N. K. Moshchuk, “Reducing the equations of motion of certain non-holonomic Chaplygin systems to Lagrangian and Hamiltonian form”, J. Appl. Math. Mech., 51:2 (1987), 172–177 | DOI | MR | Zbl

[67] V. Narayanan, P. J. Morrison, Rank change in Poisson dynamical systems, 2013, 32 pp., arXiv: 1302.7267

[68] Ju. I. Neimark, N. A. Fufaev, Dynamics of nonholonomic systems, Transl. Math. Monogr., 33, Amer. Math. Soc., Providence, RI, 1967, ix+518 pp. | Zbl

[69] F. Noether, Über rollende Bewegung einer Kugel auf Rotationsflächen, K. B. Ludwig-Maximilians-Universität München, 1909, 56 pp.

[70] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl

[71] S. P. Novikov, I. Shmel'tser, “Periodic solutions of Kirchhoff's equations for the free motion of a rigid body in a fluid and the extended theory of Lyusternik–Shnirel'man–Morse (LSM). I”, Funct. Anal. Appl., 15:3 (1981), 197–207 | DOI | MR | Zbl

[72] S. P. Novikov, I. A. Taimanov, Modern geometric structures and fields, Grad. Stud. Math., 71, Amer. Math. Soc., Providence, RI, 2006, xx+633 pp. | DOI | MR | Zbl

[73] T. Ohsawa, O. E. Fernandez, A. M. Bloch, D. V. Zenkov, “Nonholonomic Hamilton–Jacobi theory via Chaplygin Hamiltonization”, J. Geom. Phys., 61:8 (2011), 1263–1291 | DOI | MR | Zbl

[74] A. Ramos, “Poisson structures for reduced non-holonomic systems”, J. Phys. A, 37 (2004), 4821–4842 | DOI | MR | Zbl

[75] E. Dzh. Raus, Dinamika sistemy tverdykh tel, I, II, Nauka, M., 1983, 464 s., 544 pp. ; E. J. Routh, The advanced part of a treatise on the dynamics of a system of rigid bodies, Being Part 2 of ‘A treatise on the whole subject’. With numerous examples, 4th ed., revised and enlarged, MacMillan and Co., London, 1884, 343 СЃ. ; Advanced dynamics of a system of rigid bodies, Dover Publications, New York, 1960, 496 pp. | MR | MR | Zbl | MR | Zbl

[76] S. V. Stanchenko, “Non-holonomic Chaplygin systems”, J. Appl. Math. Mech., 53:1 (1989), 11–17 | DOI | MR | Zbl

[77] G. K. Suslov, Teoreticheskaya mekhanika, Gostekhizdat, M.–L., 1946, 655 pp.

[78] M. Svinin, A. Morinaga, M. Yamamoto, “On the dynamic model and motion planning for a spherical rolling robot actuated by orthogonal internal rotors”, Regul. Chaotic Dyn., 18:1-2 (2013), 126–143 | DOI | MR | Zbl

[79] A. V. Tsiganov, “On two different bi-Hamiltonian structures for the Toda lattice”, J. Phys. A, 40:24 (2007), 6395–6406 | DOI | MR | Zbl

[80] A. V. Tsiganov, “On bi-Hamiltonian geometry of the Lagrange top”, J. Phys. A, 41:31 (2008), 315212, 12 pp. | DOI | MR | Zbl

[81] A. Tsiganov, “Integrable Euler top and nonholonomic Chaplygin ball”, J. Geom. Mech., 3:3 (2011), 337–362 | DOI | MR | Zbl

[82] A. V. Tsiganov, “One invariant measure and different Poisson brackets for two non-holonomic systems”, Regul. Chaotic Dyn., 17:1 (2012), 72–96 | DOI | MR | Zbl

[83] A. V. Tsiganov, “On the Poisson structures for the nonholonomic Chaplygin and Veselova problems”, Regul. Chaotic Dyn., 17:5 (2012), 439–450 | DOI | MR | Zbl

[84] A. V. Tsiganov, “One family of conformally Hamiltonian systems”, Theoret. Math. Phys., 173:2 (2012), 1481–1497 | DOI | DOI | Zbl

[85] A. V. Tsiganov, “On the Chaplygin problem of the rolling of a ball”, Math. Notes, 94:4 (2013), 599–602 | DOI | DOI

[86] V. V. Vagner, “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Tr. seminara po vektornomu i tenzornomu analizu, 5, MGU, M., 1941, 301–327 | MR | Zbl

[87] A. J. van der Schaft, B. M. Maschke, “On the Hamiltonian formulation of nonholonomic mechanical systems”, Rep. Math. Phys., 34:2 (1994), 225–233 | DOI | MR | Zbl

[88] A. M. Vershik, L. D. Faddeev, “Differential geometry and Lagrangian mechanics with constraints”, Soviet Phys. Dokl., 17 (1972), 34–36 | Zbl

[89] A. M. Vershik, L. D. Faddeev, “Klassicheskaya i neklassicheskaya dinamika so svyazyami”, Geometriya i topologiya v globalnykh nelineinykh zadachakh, Novoe v globalnom analize, Izd-vo Voronezh. gos. un-ta, Voronezh, 1984, 23–48 | MR | Zbl

[90] A. M. Vershik, V. Ya. Gershkovich, “Negolonomnye zadachi i geometrii raspredelenii”, pril. k kn.: F. Griffits, Vneshnie differentsialnye sistemy i variatsionnoe ischislenie, Mir, M., 1986, 318–349 | MR

[91] A. M. Vershik, V. Ya. Gershkovich, “Nonholonomic dynamical systems. Geometry of distributions and variational problems”, Dynamical systems, VII, Encyclopaedia Math. Sci., 16, Springer-Verlag, Berlin, 1994, 1–81 | MR | MR | Zbl

[92] A. P. Veselov, L. E. Veselova, “Integrable nonholonomic systems on Lie groups”, Math. Notes, 44:5 (1988), 810–819 | DOI | MR | Zbl | Zbl

[93] | MR | Zbl

[94] P. V. Voronets, K zadache o dvizhenii tverdogo tela, katyaschegosya bez skolzheniya po dannoi poverkhnosti pod deistviem dannykh sil, Predvarit. soobsch., chit. v zasedanii Fiz.-mat. o-va pri Un-te sv. Vladimira 23 fevr. 1909 g., Tip. Imp. Un-ta Sv. Vladimira, Kiev, 1909, 11 pp.

[95] D. V. Zenkov, “The geometry of the Routh problem”, J. Nonlinear Sci., 5:6 (1995), 503–519 | DOI | MR | Zbl