Boundary layer theory for convection-diffusion equations in a circle
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 435-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to boundary layer theory for singularly perturbed convection-diffusion equations in the unit circle. Two characteristic points appear, $(\pm 1,0)$, in the context of the equations considered here, and singularities may occur at these points depending on the behaviour there of a given function $f$, namely, the flatness or compatibility of $f$ at these points as explained below. Two previous articles addressed two particular cases: [24] dealt with the case where the function $f$ is sufficiently flat at the characteristic points, the so-called compatible case; [25] dealt with a generic non-compatible case ($f$ polynomial). This survey article recalls the essential results from those papers, and continues with the general case ($f$ non-flat and non-polynomial) for which new specific boundary layer functions of parabolic type are introduced in addition. Bibliography: 49 titles.
Keywords: boundary layers, characteristic points, convection-dominated problems, parabolic boundary layers.
Mots-clés : singular perturbations
@article{RM_2014_69_3_a2,
     author = {Ch.-Y. Jung and R. Temam},
     title = {Boundary layer theory for convection-diffusion equations in a~circle},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {435--480},
     year = {2014},
     volume = {69},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_3_a2/}
}
TY  - JOUR
AU  - Ch.-Y. Jung
AU  - R. Temam
TI  - Boundary layer theory for convection-diffusion equations in a circle
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 435
EP  - 480
VL  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_3_a2/
LA  - en
ID  - RM_2014_69_3_a2
ER  - 
%0 Journal Article
%A Ch.-Y. Jung
%A R. Temam
%T Boundary layer theory for convection-diffusion equations in a circle
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 435-480
%V 69
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2014_69_3_a2/
%G en
%F RM_2014_69_3_a2
Ch.-Y. Jung; R. Temam. Boundary layer theory for convection-diffusion equations in a circle. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 435-480. http://geodesic.mathdoc.fr/item/RM_2014_69_3_a2/

[1] I. Andronov, D. Bouche, F. Molinet, Asymptotic and hybrid methods in electromagnetics, IEE Electromagnet. Waves Ser., 48, Institution of Electrical Engineers (IEE), London, 2005, xii+249 pp. | DOI | MR | Zbl

[2] C. Bardos, “Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport”, Ann. Sci. École Norm. Sup. (4), 3:2 (1970), 185–233 | MR | Zbl

[3] G. K. Batchelor, An introduction to fluid dynamics, Cambridge Math. Lib., 2nd paperback ed., Cambridge Univ. Press, Cambridge, 1999, xviii+615 pp. | MR | Zbl

[4] D. Bouche, O. Lafitte, “Comparaison couche limite – analyse microlocale”, Asymptot. Anal. (to appear)

[5] D. Bouche, F. Molinet, Méthodes asymptotiques en électromagnétisme, with a preface by R. Dautray, Math. Appl. (Berlin), 16, Springer-Verlag, Paris, 1994, xviii+416 pp. | MR | Zbl

[6] K. W. Chang, F. A. Howes, Nonlinear singular perturbation phenomena: theory and applications, Appl. Math. Sci., 56, Springer-Verlag, New York, 1984, viii+180 pp. | DOI | MR | Zbl

[7] M. G. Crandall, P.-L. Lions, “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[8] P. G. Drazin, W. H. Reid, Hydrodynamic stability, with a foreword by J. Miles, Cambridge Math. Lib., 2nd ed., Cambridge Univ. Press, Cambridge, 2004, xx+605 pp. | DOI | MR | Zbl

[9] W. Eckhaus, “Boundary layers in linear elliptic singular perturbation problems”, SIAM Rev., 14:2 (1972), 225–270 | DOI | MR | Zbl

[10] W. Eckhaus, Asymptotic analysis of singular perturbations, Stud. Math. Appl., 9, North-Holland Publishing Co., Amsterdam–New York, 1979, xi+287 pp. | MR | Zbl

[11] W. Eckhaus, E. M. de Jager, “Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type”, Arch. Ration. Mech. Anal., 23:1 (1966), 26–86 | DOI | MR | Zbl

[12] G.-M. Gie, M. Hamouda, R. Temam, “Asymptotic analysis of the {S}tokes problem on general bounded domains: the case of a characteristic boundary”, Appl. Anal., 89:1 (2010), 49–66 | DOI | MR | Zbl

[13] J. Grasman, On the birth of boundary layers, Math. Centre Tracts, 36, Mathematisch Centrum, Amsterdam, 1971, iv+137 pp. | MR | Zbl

[14] M. Hamouda, C.-Y. Jung, R. Temam, “Boundary layers for the 2D linearized primitive equations”, Commun. Pure Appl. Anal., 8:1 (2009), 335–359 | DOI | MR | Zbl

[15] M. Hamouda, C.-Y. Jung, R. Temam, “Asymptotic analysis for the 3{D} primitive equations in a channel”, Discrete Contin. Dyn. Syst. Ser. S, 6:2 (2013), 401–422 | MR | Zbl

[16] M. Hamouda, R. Temam, “Some singular perturbation problems related to the Navier–Stokes equations”, Advances in deterministic and stochastic analysis, World Sci. Publ., Hackensack, NJ, 2007, 197–227 | DOI | MR | Zbl

[17] M. Hamouda, R. Temam, “Boundary layers for the {N}avier–{S}tokes equations. The case of a characteristic boundary”, Georgian Math. J., 15:3 (2008), 517–530 | MR | Zbl

[18] C.-Y. Jung, T. B. Nguyen, “Semi-analytical numerical methods for convection-dominated problems with turning points”, Int. J. Numer. Anal. Model., 10:2 (2013), 314–332 | MR | Zbl

[19] C.-Y. Jung, M. Petcu, R. Temam, “Singular perturbation analysis on a homogeneous ocean circulation model”, Anal. Appl. (Singap.), 9:3 (2011), 275–313 | DOI | MR | Zbl

[20] C.-Y. Jung, R. Temam, “Numerical approximation of two-dimensional convection-diffusion equations with multiple boundary layers”, Int. J. Numer. Anal. Model., 2:4 (2005), 367–408 | MR | Zbl

[21] C.-Y. Jung, R. Temam, “On parabolic boundary layers for convection-diffusion equations in a channel: analysis and numerical applications”, J. Sci. Comput., 28:2-3 (2006), 361–410 | DOI | MR | Zbl

[22] C.-Y. Jung, R. Temam, “Asymptotic analysis for singularly perturbed convection-diffusion equations with a turning point”, J. Math. Phys., 48:6 (2007), 065301, 27 pp. | DOI | MR | Zbl

[23] C.-Y. Jung, R. Temam, “Interaction of boundary layers and corner singularities”, Discrete Contin. Dyn. Syst., 23:1-2 (2009), 315–339 | DOI | MR | Zbl

[24] C.-Y. Jung, R. Temam, “Convection-diffusion equations in a circle: the compatible case”, J. Math. Pures Appl. (9), 96:1 (2011), 88–107 | DOI | MR | Zbl

[25] C.-Y. Jung, R. Temam, “Singular perturbations and boundary layer theory for convection-diffusion equations in a circle: the generic noncompatible case”, SIAM J. Math. Anal., 44:6 (2012), 4274–4296 | DOI | MR | Zbl

[26] T. Kato, “Remarks on the Euler and Navier–Stokes equations in ${\mathbf R}^2$”, Nonlinear functional analysis and its applications, part 2 (Berkeley, CA, 1983), Proc. Sympos. Pure Math., 45 part 2, Amer. Math. Soc., Providence, RI, 1986, 1–7 | DOI | MR | Zbl

[27] J. B. Keller, S. I. Rubinow, “Asymptotic solutions of eigenvalue problems”, Ann. Physics, 9:1 (1960), 24–75 | DOI | Zbl

[28] N. Levinson, “The first boundary value problem for $\varepsilon\Delta u+A(x,y)u_x+B(x,y)u_y+C(x,y)u=D(x,y)$ for small $\varepsilon$”, Ann. of Math. (2), 51 (1950), 428–445 | DOI | MR | Zbl

[29] J.-L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Math., 323, Springer-Verlag, Berlin–New York, 1973, xii+645 pp. | MR | Zbl

[30] P.-L. Lions, “On the Hamilton–Jacobi–Bellman equations”, Acta Appl. Math., 1:1 (1983), 17–41 | DOI | MR | Zbl

[31] M. C. Lombardo, M. Sammartino, “Zero viscosity limit of the Oseen equations in a channel”, SIAM J. Math. Anal., 33:2 (2001), 390–410, (electronic) | DOI | MR | Zbl

[32] O. A. Oleinik, “O lineinykh uravneniyakh vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Matem. sb., 69(111):1 (1966), 111–140 | MR | Zbl

[33] R. E. O'Malley, Jr., “On boundary value problems for a singularly perturbed differential equation with a turning point”, SIAM J. Math. Anal., 1:4 (1970), 479–490 | DOI | MR | Zbl

[34] R. E. O'Malley, Jr., “Singularly perturbed linear two-point boundary value problems”, SIAM Rev., 50:3 (2008), 459–482 | DOI | MR | Zbl

[35] L. Prandtl, “Über Flüssigkeitsbewegung bei sehr kleiner Reibung”, Verhandlungen des 3. Internationalen Mathematischen Kongress (Heidelberg, 1904), B. G. Teubner, Leipzig, 1905, 484–491 | Zbl

[36] L. Prandtl, Gesammelte Abhandlungen zur angewandten Mechanik, Hydro- und Aerodynamik, v. 1–3, ed. F. W. Riegels, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1961, xx+xiv+xiv+1620 pp. | MR | Zbl

[37] J.-P. Raymond, “Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24:6 (2007), 921–951 | DOI | MR | Zbl

[38] H.-G. Roos, M. Stynes, L. Tobiska, Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems, Springer Ser. Comput. Math., 24, Springer-Verlag, Berlin, 1996, xvi+348 pp. | DOI | MR | Zbl

[39] S.-D. Shih, R. B. Kellogg, “Asymptotic analysis of a singular perturbation problem”, SIAM J. Math. Anal., 18:5 (1987), 1467–1511 | DOI | MR | Zbl

[40] M. Stynes, “Steady-state convection-diffusion problems”, Acta Numer., 14 (2005), 445–508 | DOI | MR | Zbl

[41] R. Temam, Navier–Stokes equations. Theory and numerical analysis, reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001, xiv+408 pp. | MR | Zbl

[42] R. Temam, X. Wang, “Boundary layers for Oseen's type equation in space dimension three”, Russian J. Math. Phys., 5:2 (1997), 227–246 | MR | Zbl

[43] R. Temam, X. Wang, “Boundary layers associated with incompressible Navier–Stokes equations: the noncharacteristic boundary case”, J. Differential Equations, 179:2 (2002), 647–686 | DOI | MR | Zbl

[44] N. M. Temme, “Analytical methods for an elliptic singular perturbation problem in a circle”, J. Comput. Appl. Math., 207:2 (2007), 301–322 | DOI | MR | Zbl

[45] F. Verhulst, Methods and applications of singular perturbations. Boundary layers and multiple timescale dynamics, Texts Appl. Math., 50, Springer, New York, 2005, xvi+324 pp. | DOI | MR | Zbl

[46] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5(77) (1957), 3–122 | MR | Zbl

[47] T. von Kármán, “Progress in the statistical theory of turbulence”, J. Marine Research, 7 (1948), 252–264 | MR

[48] W. Wasow, Asymptotic expansions for ordinary differential equations, Pure Appl. Math., 14, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1965, ix+362 pp. | MR | Zbl

[49] W. Wasow, Linear turning point theory, Appl. Math. Sci., 54, Springer-Verlag, New York, 1985, ix+246 pp. | DOI | MR | Zbl