Boundary layer theory for convection-diffusion equations in a~circle
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 435-480
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to boundary layer theory for singularly perturbed convection-diffusion equations in the unit circle. Two characteristic points appear, $(\pm 1,0)$, in the context of the equations considered here, and singularities may occur at these points depending on the behaviour there of a given function $f$, namely, the flatness or compatibility of $f$ at these points as explained below. Two previous articles addressed two particular cases: [24] dealt with the case where the function $f$ is sufficiently flat at the characteristic points, the so-called compatible case; [25] dealt with a generic non-compatible case ($f$ polynomial). This survey article recalls the essential results from those papers, and continues with the general case ($f$ non-flat and non-polynomial) for which new specific boundary layer functions of parabolic type are introduced in addition.
Bibliography: 49 titles.
Keywords:
boundary layers, characteristic points, convection-dominated problems, parabolic boundary layers.
Mots-clés : singular perturbations
Mots-clés : singular perturbations
@article{RM_2014_69_3_a2,
author = {Ch.-Y. Jung and R. Temam},
title = {Boundary layer theory for convection-diffusion equations in a~circle},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {435--480},
publisher = {mathdoc},
volume = {69},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_3_a2/}
}
TY - JOUR AU - Ch.-Y. Jung AU - R. Temam TI - Boundary layer theory for convection-diffusion equations in a~circle JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 435 EP - 480 VL - 69 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2014_69_3_a2/ LA - en ID - RM_2014_69_3_a2 ER -
Ch.-Y. Jung; R. Temam. Boundary layer theory for convection-diffusion equations in a~circle. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 435-480. http://geodesic.mathdoc.fr/item/RM_2014_69_3_a2/