Boundary layer theory for convection-diffusion equations in a~circle
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 435-480

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to boundary layer theory for singularly perturbed convection-diffusion equations in the unit circle. Two characteristic points appear, $(\pm 1,0)$, in the context of the equations considered here, and singularities may occur at these points depending on the behaviour there of a given function $f$, namely, the flatness or compatibility of $f$ at these points as explained below. Two previous articles addressed two particular cases: [24] dealt with the case where the function $f$ is sufficiently flat at the characteristic points, the so-called compatible case; [25] dealt with a generic non-compatible case ($f$ polynomial). This survey article recalls the essential results from those papers, and continues with the general case ($f$ non-flat and non-polynomial) for which new specific boundary layer functions of parabolic type are introduced in addition. Bibliography: 49 titles.
Keywords: boundary layers, characteristic points, convection-dominated problems, parabolic boundary layers.
Mots-clés : singular perturbations
@article{RM_2014_69_3_a2,
     author = {Ch.-Y. Jung and R. Temam},
     title = {Boundary layer theory for convection-diffusion equations in a~circle},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {435--480},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_3_a2/}
}
TY  - JOUR
AU  - Ch.-Y. Jung
AU  - R. Temam
TI  - Boundary layer theory for convection-diffusion equations in a~circle
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 435
EP  - 480
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_3_a2/
LA  - en
ID  - RM_2014_69_3_a2
ER  - 
%0 Journal Article
%A Ch.-Y. Jung
%A R. Temam
%T Boundary layer theory for convection-diffusion equations in a~circle
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 435-480
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2014_69_3_a2/
%G en
%F RM_2014_69_3_a2
Ch.-Y. Jung; R. Temam. Boundary layer theory for convection-diffusion equations in a~circle. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 435-480. http://geodesic.mathdoc.fr/item/RM_2014_69_3_a2/