Mots-clés : convection, advection, reaction-diffusion equations
@article{RM_2014_69_3_a1,
author = {B. Fiedler and C. Grotta-Ragazzo and C. Rocha},
title = {An explicit {Lyapunov} function for reflection symmetric parabolic partial differential equations on the circle},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {419--433},
year = {2014},
volume = {69},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_3_a1/}
}
TY - JOUR AU - B. Fiedler AU - C. Grotta-Ragazzo AU - C. Rocha TI - An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 419 EP - 433 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2014_69_3_a1/ LA - en ID - RM_2014_69_3_a1 ER -
%0 Journal Article %A B. Fiedler %A C. Grotta-Ragazzo %A C. Rocha %T An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 419-433 %V 69 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2014_69_3_a1/ %G en %F RM_2014_69_3_a1
B. Fiedler; C. Grotta-Ragazzo; C. Rocha. An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 419-433. http://geodesic.mathdoc.fr/item/RM_2014_69_3_a1/
[1] S. Angenent, “The zero set of a solution of a parabolic equation”, J. Reine Angew. Math., 1988:390 (1988), 79–96 | DOI | MR | Zbl
[2] S. B. Angenent, B. Fiedler, “The dynamics of rotating waves in scalar reaction diffusion equations”, Trans. Amer. Math. Soc., 307:2 (1988), 545–568 | DOI | MR | Zbl
[3] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992, x+532 pp. | MR | MR | Zbl | Zbl
[4] N. Chafee, E. F. Infante, “A bifurcation problem for a nonlinear partial differential equation of parabolic type”, Appl. Anal., 4:1 (1974), 17–37 | DOI | MR | Zbl
[5] B. Fiedler, J. Mallet-Paret, “A Poincaré–Bendixson theorem for scalar reaction diffusion equations”, Arch. Ration. Mech. Anal., 107:4 (1989), 325–345 | DOI | MR | Zbl
[6] B. Fiedler, H. Matano, “Global dynamics of blow-up profiles in one-dimensional reaction diffusion equations”, J. Dynam. Differential Equations, 19:4 (2007), 867–893 | DOI | MR | Zbl
[7] B. Fiedler, C. Rocha, M. Wolfrum, “Heteroclinic orbits between rotating waves of semilinear parabolic equations on the circle”, J. Differential Equations, 201:1 (2004), 99–138 | DOI | MR | Zbl
[8] B. Fiedler, C. Rocha, M. Wolfrum, “Sturm global attractors for $S^1$-equivariant parabolic equations”, Netw. Heterog. Media, 7:4 (2012), 617–659 | DOI | MR | Zbl
[9] L. F. Guidi, D. H. U. Marchetti, “Renormalization group flow of the two-dimensional hierarchical Coulomb gas”, Comm. Math. Phys., 219:3 (2001), 671–702 | DOI | MR | Zbl
[10] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981, iv+348 pp. | MR | Zbl
[11] H. Matano, “Asymptotic behavior of solutions of semilinear heat equations on $S^1$”, Nonlinear diffusion equations and their equilibrium states (Berkeley, CA, 1986), v. II, Math. Sci. Res. Inst. Publ., 13, eds. W.-M. Ni, L. A. Peletier, J. Serrin, Springer, New York, 1988, 139–162 | DOI | MR | Zbl
[12] H. Matano, K.-I. Nakamura, “The global attractor of semilinear parabolic equations on $S^1$”, Discrete Contin. Dyn. Systems, 3:1 (1997), 1–24 | MR | Zbl
[13] X. Mora, “Semilinear parabolic problems define semiflows on $C^k$ spaces”, Trans. Amer. Math. Soc., 278:1 (1983), 21–55 | DOI | MR | Zbl
[14] O. A. Oleinik, S. N. Kruzhkov, “Quasi-linear second-order parabolic equations with many independent variables”, Russian Math. Surveys, 16:5 (1961), 105–146 | DOI | MR | Zbl
[15] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983, viii+279 pp. | DOI | MR | Zbl
[16] C. Ragazzo, “Scalar autonomous second order ordinary differential equations”, Qual. Theory Dyn. Syst., 11:2 (2012), 277–415 | DOI | MR | Zbl
[17] B. Sandstede, B. Fiedler, “Dynamics of periodically forced parabolic equations on the circle”, Ergodic Theory Dynam. Systems, 12:3 (1992), 559–571 | DOI | MR | Zbl
[18] C. Sturm, “Sur une classe d'équations à différences partielles”, J. Math. Pures Appl., 1 (1836), 373–444
[19] T. I. Zelenyak, “Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable”, Differ. Equ., 4 (1972), 17–22 | MR | Zbl
[20] T. I. Zelenyak, M. M. Lavrentiev Jr., M. P. Vishnevskii, Qualitative theory of parabolic equations. Part 1, VSP, Utrecht, 1997, ii+417 pp. | MR | Zbl