Local formulae for the hydrodynamic pressure and applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 395-418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide local formulae for the pressure of incompressible fluids. The pressure can be expressed in terms of its average and averages of squares of velocity increments in arbitrarily small neighbourhoods. As an application, we give a brief proof of the fact that $C^{\alpha}$ velocities have $C^{2\alpha}$ (or Lipschitz) pressures. We also give some regularity criteria for 3D incompressible Navier–Stokes equations. Bibliography: 9 titles.
Keywords: Navier–Stokes equations, pressure, regularity criteria.
Mots-clés : Euler's equations
@article{RM_2014_69_3_a0,
     author = {P. Constantin},
     title = {Local formulae for the hydrodynamic pressure and applications},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {395--418},
     year = {2014},
     volume = {69},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_3_a0/}
}
TY  - JOUR
AU  - P. Constantin
TI  - Local formulae for the hydrodynamic pressure and applications
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 395
EP  - 418
VL  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_3_a0/
LA  - en
ID  - RM_2014_69_3_a0
ER  - 
%0 Journal Article
%A P. Constantin
%T Local formulae for the hydrodynamic pressure and applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 395-418
%V 69
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2014_69_3_a0/
%G en
%F RM_2014_69_3_a0
P. Constantin. Local formulae for the hydrodynamic pressure and applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 395-418. http://geodesic.mathdoc.fr/item/RM_2014_69_3_a0/

[1] L. C. Berselli, G. P. Galdi, “Regularity criteria involving the pressure for the weak solutions to the Navier–Stokes equations”, Proc. Amer. Math. Soc., 130:12 (2002), 3585–3595 | DOI | MR | Zbl

[2] P. Constantin, “An Eulerian–Lagrangian approach to the Navier–Stokes equations”, Comm. Math. Phys., 216:3 (2001), 663–686 | DOI | MR | Zbl

[3] L. Escauriaza, G. Seregin, V. Šverák, “Backward uniqueness for parabolic equations”, Arch. Ration. Mech. Anal., 169:2 (2003), 147–157 | DOI | MR | Zbl

[4] C. Foiaş, C. Guillopé, R. Temam, “New a priori estimates for Navier–Stokes equations in dimension 3”, Comm. Partial Differential Equations, 6:3 (1981), 329–359 | DOI | MR | Zbl

[5] P. Isett, Regularity in time along the coarse scale flow for the incompressible Euler equations, 2013 (v3 – 2014), 48 pp., arXiv: 1307.0565

[6] G. Seregin, V. Šverák, “The Navier–Stokes equations and backward uniqueness”, Nonlinear problems in mathematical physics abd related topics. II, Int. Math. Ser. (N. Y.), 2, Kluwer/Plenum, New York, 2002, 353–366 | DOI | MR | Zbl

[7] G. Seregin, V. Šverák, “Navier–Stokes equations with lower bounds on the pressure”, Arch. Ration. Mech. Anal., 163:1 (2002), 65–86 | DOI | MR | Zbl

[8] T. Tao, “Localisation and compactness properties of the Navier–Stokes global regularity problem”, Anal. PDE, 6:1 (2013), 25–107 ; (2012), 95 pp., arXiv: 1108.1165v4 | DOI | MR | Zbl

[9] A. Vasseur, “Higher derivatives estimate for the 3D Navier–Stokes equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27:5 (2010), 1189–1204 | DOI | MR | Zbl