Mots-clés : Euler's equations
@article{RM_2014_69_3_a0,
author = {P. Constantin},
title = {Local formulae for the hydrodynamic pressure and applications},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {395--418},
year = {2014},
volume = {69},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_3_a0/}
}
P. Constantin. Local formulae for the hydrodynamic pressure and applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 3, pp. 395-418. http://geodesic.mathdoc.fr/item/RM_2014_69_3_a0/
[1] L. C. Berselli, G. P. Galdi, “Regularity criteria involving the pressure for the weak solutions to the Navier–Stokes equations”, Proc. Amer. Math. Soc., 130:12 (2002), 3585–3595 | DOI | MR | Zbl
[2] P. Constantin, “An Eulerian–Lagrangian approach to the Navier–Stokes equations”, Comm. Math. Phys., 216:3 (2001), 663–686 | DOI | MR | Zbl
[3] L. Escauriaza, G. Seregin, V. Šverák, “Backward uniqueness for parabolic equations”, Arch. Ration. Mech. Anal., 169:2 (2003), 147–157 | DOI | MR | Zbl
[4] C. Foiaş, C. Guillopé, R. Temam, “New a priori estimates for Navier–Stokes equations in dimension 3”, Comm. Partial Differential Equations, 6:3 (1981), 329–359 | DOI | MR | Zbl
[5] P. Isett, Regularity in time along the coarse scale flow for the incompressible Euler equations, 2013 (v3 – 2014), 48 pp., arXiv: 1307.0565
[6] G. Seregin, V. Šverák, “The Navier–Stokes equations and backward uniqueness”, Nonlinear problems in mathematical physics abd related topics. II, Int. Math. Ser. (N. Y.), 2, Kluwer/Plenum, New York, 2002, 353–366 | DOI | MR | Zbl
[7] G. Seregin, V. Šverák, “Navier–Stokes equations with lower bounds on the pressure”, Arch. Ration. Mech. Anal., 163:1 (2002), 65–86 | DOI | MR | Zbl
[8] T. Tao, “Localisation and compactness properties of the Navier–Stokes global regularity problem”, Anal. PDE, 6:1 (2013), 25–107 ; (2012), 95 pp., arXiv: 1108.1165v4 | DOI | MR | Zbl
[9] A. Vasseur, “Higher derivatives estimate for the 3D Navier–Stokes equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27:5 (2010), 1189–1204 | DOI | MR | Zbl