@article{RM_2014_69_2_a5,
author = {C. Foias and M. S. Jolly and R. Kravchenko and E. S. Titi},
title = {A unified approach to determining forms for the {2D} {Navier{\textendash}Stokes} equations {\textemdash} the general interpolants case},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {359--381},
year = {2014},
volume = {69},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_2_a5/}
}
TY - JOUR AU - C. Foias AU - M. S. Jolly AU - R. Kravchenko AU - E. S. Titi TI - A unified approach to determining forms for the 2D Navier–Stokes equations — the general interpolants case JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 359 EP - 381 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2014_69_2_a5/ LA - en ID - RM_2014_69_2_a5 ER -
%0 Journal Article %A C. Foias %A M. S. Jolly %A R. Kravchenko %A E. S. Titi %T A unified approach to determining forms for the 2D Navier–Stokes equations — the general interpolants case %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 359-381 %V 69 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2014_69_2_a5/ %G en %F RM_2014_69_2_a5
C. Foias; M. S. Jolly; R. Kravchenko; E. S. Titi. A unified approach to determining forms for the 2D Navier–Stokes equations — the general interpolants case. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 359-381. http://geodesic.mathdoc.fr/item/RM_2014_69_2_a5/
[1] A. Azouani, E. Olson, E. S. Titi, Continuous data assimilation using general interpolant observables, 2013, 25 pp., arXiv: ; J. Nonlinear Sci. (to appear) 1304.0997
[2] A. Azouani, E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters – a reaction-diffusion paradigm, 2013, 21 pp., arXiv: 1301.6992
[3] G. K. Batchelor, The theory of homogeneous turbulence, Cambridge Monogr. Mech. Appl. Math., Cambridge Univ. Press, Cambridge, 1953, x+197 pp. | MR | Zbl
[4] H. Brézis, T. Gallouet, “Nonlinear Schrödinger evolution equations”, Nonlinear Anal., 4:4 (1980), 677–681 | DOI | MR | Zbl
[5] B. Cockburn, D. Jones, E. S. Titi, “Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems”, Math. Comp., 66:219 (1997), 1073–1087 | DOI | MR | Zbl
[6] P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1988, x+190 pp. | MR | Zbl
[7] P. Constantin, C. Foias, R. Temam, “On the dimension of the attractors in two-dimensional turbulence”, Phys. D, 30:3 (1988), 284–296 | DOI | MR | Zbl
[8] C. Foias, M. S. Jolly, R. Kravchenko, E. S. Titi, “A determining form for the 2D Navier–Stokes equations: The Fourier modes case”, J. Math. Phys., 53:11 (2012), 115623, 30 pp. | DOI | MR | Zbl
[9] C. Foias, M. Jolly, R. Lan, R. Rupam, Y. Yang, Time analyticity with higher norm estimates for the $\mathrm{2D}$ Navier–Stokes equations, 2013, arXiv: ; IMA J. Appl. Math. (to appear) 1312.0929
[10] C. Foias, O. Manley, R. Rosa, R. Temam, “Navier–Stokes equations and turbulence”, Encyclopedia Math. Appl., 83, Cambridge Univ. Press, Cambridge, 2001, xiv+347 pp. | DOI | MR | Zbl
[11] C. Foiaş, G. Prodi, “Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension $2$”, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1–34 | MR | Zbl
[12] C. Foias, G. R. Sell, R. Temam, “Inertial manifolds for nonlinear evolutionary equations”, J. Differential Equations, 73:2 (1988), 309–353 | DOI | MR | Zbl
[13] C. Foias, G. R. Sell, E. S. Titi, “Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations”, J. Dynam. Differential Equations, 1:2 (1989), 199–244 | DOI | MR | Zbl
[14] C. Foias, R. Temam, “Asymptotic numerical analysis for the Navier–Stokes equations”, Nonlinear dynamics and turbulence, Interaction Mech. Math. Ser., Pitman, Boston, MA, 1983, 139–155 | MR | Zbl
[15] C. Foias, R. Temam, “Determination of the solutions of the Navier–Stokes equations by a set of nodal values”, Math. Comp., 43:167 (1984), 117–133 | DOI | MR | Zbl
[16] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp. | MR | Zbl
[17] D. A. Jones, E. S. Titi, “Determining finite volume elements for the 2D Navier–Stokes equations”, Phys. D, 60:1-4 (1992), 165–174 | DOI | MR | Zbl
[18] D. A. Jones, E. S. Titi, “Upper bounds on the number of determining modes, nodes and volume elements for the Navier–Stokes equations”, Indiana Univ. Math. J., 42:3 (1993), 875–887 | DOI | MR | Zbl
[19] R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence”, Phys. Fluids, 10:7 (1967), 1417–1423 | DOI
[20] C. E. Leith, “Diffusion approximation for two-dimensional turbulence”, Phys. Fluids, 11:3 (1968), 671–673 | DOI
[21] V. X. Liu, “A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier–Stokes equations”, Comm. Math. Phys., 158:2 (1993), 327–339 | DOI | MR | Zbl
[22] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp. | DOI | MR | Zbl
[23] E. S. Titi, “On a criterion for locating stable stationary solutions to the Navier–Stokes equations”, Nonlinear Anal., 11:9 (1987), 1085–1102 | DOI | MR | Zbl