A unified approach to determining forms for the 2D Navier–Stokes equations — the general interpolants case
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 359-381 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the long-time dynamics (the global attractor) of the 2D Navier–Stokes system is embedded in the long-time dynamics of an ordinary differential equation, called a determining form, in a space of trajectories which is isomorphic to $C^1_b(\mathbb{R};\mathbb{R}^N)$ for sufficiently large $N$ depending on the physical parameters of the Navier–Stokes equations. A unified approach is presented, based on interpolant operators constructed from various determining parameters for the Navier–Stokes equations, namely, determining nodal values, Fourier modes, finite volume elements, finite elements, and so on. There are two immediate and interesting consequences of this unified approach. The first is that the constructed determining form has a Lyapunov function, and thus its solutions converge to the set of steady states of the determining form as the time goes to infinity. The second is that these steady states of the determining form can be uniquely identified with the trajectories in the global attractor of the Navier–Stokes system. It should be added that this unified approach is general enough that it applies, in an almost straightforward manner, to a whole class of dissipative dynamical systems. Bibliography: 23 titles.
Keywords: Navier–Stokes equation, inertial manifold, determining forms, determining modes, dissipative dynamical systems.
@article{RM_2014_69_2_a5,
     author = {C. Foias and M. S. Jolly and R. Kravchenko and E. S. Titi},
     title = {A unified approach to determining forms for the {2D} {Navier{\textendash}Stokes} equations {\textemdash} the general interpolants case},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {359--381},
     year = {2014},
     volume = {69},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_2_a5/}
}
TY  - JOUR
AU  - C. Foias
AU  - M. S. Jolly
AU  - R. Kravchenko
AU  - E. S. Titi
TI  - A unified approach to determining forms for the 2D Navier–Stokes equations — the general interpolants case
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 359
EP  - 381
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_2_a5/
LA  - en
ID  - RM_2014_69_2_a5
ER  - 
%0 Journal Article
%A C. Foias
%A M. S. Jolly
%A R. Kravchenko
%A E. S. Titi
%T A unified approach to determining forms for the 2D Navier–Stokes equations — the general interpolants case
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 359-381
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2014_69_2_a5/
%G en
%F RM_2014_69_2_a5
C. Foias; M. S. Jolly; R. Kravchenko; E. S. Titi. A unified approach to determining forms for the 2D Navier–Stokes equations — the general interpolants case. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 359-381. http://geodesic.mathdoc.fr/item/RM_2014_69_2_a5/

[1] A. Azouani, E. Olson, E. S. Titi, Continuous data assimilation using general interpolant observables, 2013, 25 pp., arXiv: ; J. Nonlinear Sci. (to appear) 1304.0997

[2] A. Azouani, E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters – a reaction-diffusion paradigm, 2013, 21 pp., arXiv: 1301.6992

[3] G. K. Batchelor, The theory of homogeneous turbulence, Cambridge Monogr. Mech. Appl. Math., Cambridge Univ. Press, Cambridge, 1953, x+197 pp. | MR | Zbl

[4] H. Brézis, T. Gallouet, “Nonlinear Schrödinger evolution equations”, Nonlinear Anal., 4:4 (1980), 677–681 | DOI | MR | Zbl

[5] B. Cockburn, D. Jones, E. S. Titi, “Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems”, Math. Comp., 66:219 (1997), 1073–1087 | DOI | MR | Zbl

[6] P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1988, x+190 pp. | MR | Zbl

[7] P. Constantin, C. Foias, R. Temam, “On the dimension of the attractors in two-dimensional turbulence”, Phys. D, 30:3 (1988), 284–296 | DOI | MR | Zbl

[8] C. Foias, M. S. Jolly, R. Kravchenko, E. S. Titi, “A determining form for the 2D Navier–Stokes equations: The Fourier modes case”, J. Math. Phys., 53:11 (2012), 115623, 30 pp. | DOI | MR | Zbl

[9] C. Foias, M. Jolly, R. Lan, R. Rupam, Y. Yang, Time analyticity with higher norm estimates for the $\mathrm{2D}$ Navier–Stokes equations, 2013, arXiv: ; IMA J. Appl. Math. (to appear) 1312.0929

[10] C. Foias, O. Manley, R. Rosa, R. Temam, “Navier–Stokes equations and turbulence”, Encyclopedia Math. Appl., 83, Cambridge Univ. Press, Cambridge, 2001, xiv+347 pp. | DOI | MR | Zbl

[11] C. Foiaş, G. Prodi, “Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension $2$”, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1–34 | MR | Zbl

[12] C. Foias, G. R. Sell, R. Temam, “Inertial manifolds for nonlinear evolutionary equations”, J. Differential Equations, 73:2 (1988), 309–353 | DOI | MR | Zbl

[13] C. Foias, G. R. Sell, E. S. Titi, “Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations”, J. Dynam. Differential Equations, 1:2 (1989), 199–244 | DOI | MR | Zbl

[14] C. Foias, R. Temam, “Asymptotic numerical analysis for the Navier–Stokes equations”, Nonlinear dynamics and turbulence, Interaction Mech. Math. Ser., Pitman, Boston, MA, 1983, 139–155 | MR | Zbl

[15] C. Foias, R. Temam, “Determination of the solutions of the Navier–Stokes equations by a set of nodal values”, Math. Comp., 43:167 (1984), 117–133 | DOI | MR | Zbl

[16] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp. | MR | Zbl

[17] D. A. Jones, E. S. Titi, “Determining finite volume elements for the 2D Navier–Stokes equations”, Phys. D, 60:1-4 (1992), 165–174 | DOI | MR | Zbl

[18] D. A. Jones, E. S. Titi, “Upper bounds on the number of determining modes, nodes and volume elements for the Navier–Stokes equations”, Indiana Univ. Math. J., 42:3 (1993), 875–887 | DOI | MR | Zbl

[19] R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence”, Phys. Fluids, 10:7 (1967), 1417–1423 | DOI

[20] C. E. Leith, “Diffusion approximation for two-dimensional turbulence”, Phys. Fluids, 11:3 (1968), 671–673 | DOI

[21] V. X. Liu, “A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier–Stokes equations”, Comm. Math. Phys., 158:2 (1993), 327–339 | DOI | MR | Zbl

[22] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp. | DOI | MR | Zbl

[23] E. S. Titi, “On a criterion for locating stable stationary solutions to the Navier–Stokes equations”, Nonlinear Anal., 11:9 (1987), 1085–1102 | DOI | MR | Zbl