@article{RM_2014_69_2_a4,
author = {E. Feireisl},
title = {Dynamical systems approach to models in fluid mechanics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {331--357},
year = {2014},
volume = {69},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_2_a4/}
}
E. Feireisl. Dynamical systems approach to models in fluid mechanics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 331-357. http://geodesic.mathdoc.fr/item/RM_2014_69_2_a4/
[1] T. Alazard, “Low {M}ach number flows and combustion”, SIAM J. Math. Anal., 38:4 (2006), 1186–1213 (electronic) | DOI | MR | Zbl
[2] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Stud. Math. Appl., 22, North-Holland, Amsterdam, 1990, xii+309 pp. | MR | MR | Zbl | Zbl
[3] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992, x+532 pp. | MR | MR | Zbl | Zbl
[4] E. Becker, Gasdynamik, Leitfäden Angew. Math. Mech., 6, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1966, 248 pp. | MR | Zbl
[5] F. Belgiorno, “Notes on the third law of thermodynamics. I”, J. Phys. A, 36:30 (2003), 8165–8193 | DOI | MR | Zbl
[6] F. Belgiorno, “Notes on the third law of thermodynamics. II”, J. Phys. A, 36:30 (2003), 8195–8221 | DOI | MR | Zbl
[7] P. Bella, E. Feireisl, D. Pražák, “Long time behavior and stabilization to equilibria of solutions to the Navier–Stokes–Fourier system driven by highly oscillating unbounded external forces”, J. Dynam. Differential Equations, 25:2 (2013), 257–268 | DOI | MR | Zbl
[8] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Commun. Pure Appl. Math., 35:6 (1982), 771–831 | DOI | MR | Zbl
[9] H. B. Callen, Thermodynamics and an introduction to thermostatistics, 2nd ed., Wiley, New York, 1985, 512 pp. | Zbl
[10] V. V. Chepyzhov, V. Pata, M. I. Vishik, “Averaging of 2D Navier–Stokes equations with singularly oscillating forces”, Nonlinearity, 22:2 (2009), 351–370 | DOI | MR | Zbl
[11] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl
[12] E. Chiodaroli, E. Feireisl, O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas, 2013, 27 pp., arXiv: ; Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear) 1307.0640 | DOI
[13] P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 1988, x+190 pp. | MR | Zbl
[14] P. Constantin, C. Foias, B. Nicolaenko, R. Temam, Integral manifolds and inertial manifolds for dissipative partial differential equations, Appl. Math. Sci., 70, Springer-Verlag, New York, 1989, x+123 pp. | DOI | MR | Zbl
[15] P. Constantin, C. Foias, R. Temam, Attractors representing turbulent flows, Mem. Amer. Math. Soc., 53, No 314, 1985, vii+67 pp. | DOI | MR | Zbl
[16] C. M. Dafermos, “The second law of thermodynamics and stability”, Arch. Ration. Mech. Anal., 70:2 (1979), 167–179 | DOI | MR | Zbl
[17] C. De Lellis, L. Székelyhidi, Jr., “The Euler equations as a differential inclusion”, Ann. of Math. (2), 170:3 (2009), 1417–1436 | DOI | MR | Zbl
[18] C. De Lellis, L. Székelyhidi, Jr., “On admissibility criteria for weak solutions of the Euler equations”, Arch. Ration. Mech. Anal., 195:1 (2010), 225–260 | DOI | MR | Zbl
[19] C. De Lellis, L. Székelyhidi, Jr., “The $h$-principle and the equations of fluid dynamics”, Bull. Amer. Math. Soc. (N. S.), 49:3 (2012), 347–375 | DOI | MR | Zbl
[20] R. J. DiPerna, P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl
[21] J.-P. Eckmann, D. Ruelle, “Ergodic theory of chaos and strange attractors”, Rev. Modern Phys., 57:3, part 1 (1985), 617–656 | DOI | MR | Zbl
[22] S. Eliezer, A. Ghatak, H. Hora, An introduction to equations of state: theory and applications, Cambridge Univ. Press, Cambridge, 1986, 384 pp.
[23] J. L. Ericksen, Introduction to the thermodynamics of solids, Appl. Math. Sci., 131, rev. ed., Springer-Verlag, New York, 1998, xii+189 pp. | DOI | MR | Zbl
[24] J. Fan, S. Jiang, Y. Ou, “A blow-up criterion for compressible viscous heat-conductive flows”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27:1 (2010), 337–350 | DOI | MR | Zbl
[25] C. L. Fefferman, “Existence and smoothness of the Navier–Stokes equation”, The millennium prize problems, Clay Math. Inst., Cambridge, MA, 2006, 57–67 | MR | Zbl
[26] E. Feireisl, “On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable”, Comment. Math. Univ. Carolin., 42:1 (2001), 83–98 | MR | Zbl
[27] E. Feireisl, “On the motion of a viscous, compressible, and heat conducting fluid”, Indiana Univ. Math. J., 53:6 (2004), 1707–1740 | DOI | MR | Zbl
[28] E. Feireisl, “Relative entropies in thermodynamics of complete fluid systems”, Discrete Contin. Dyn. Syst., 32:9 (2012), 3059–3080 | DOI | MR | Zbl
[29] E. Feireisl, P. B. Mucha, A. Novotný, M. Pokorný, “Time-periodic solutions to the full Navier–Stokes–Fourier system”, Arch. Ration. Mech. Anal., 204:3 (2012), 745–786 | DOI | MR | Zbl
[30] E. Feireisl, A. Novotný, Singular limits in thermodynamics of viscous fluids, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2009, xxxvi+382 pp. | DOI | MR | Zbl
[31] E. Feireisl, A. Novotný, “Weak-strong uniqueness property for the full Navier–Stokes–Fourier system”, Arch. Ration. Mech. Anal., 204:2 (2012), 683–706 | DOI | MR | Zbl
[32] E. Feireisl, A. Novotný, Y. Sun, “A regularity criterion for the weak solutions to the Navier–Stokes–Fourier system”, Arch. Ration. Mech. Anal., 212:1 (2014), 219–239 | DOI | MR
[33] E. Feireisl, D. Pražák, Asymptotic behavior of dynamical systems in fluid mechanics, AIMS Ser. Appl. Math., 4, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2010, xii+298 pp. | MR | Zbl
[34] C. Foias, O. Manley, R. Rosa, R. Temam, Navier–Stokes equations and turbulence, Encyclopedia Math. Appl., 83, Cambridge Univ. Press, Cambridge, 2001, xiv+347 pp. | DOI | MR | Zbl
[35] G. Gallavotti, Statistical mechanics. A short treatise, Texts Monogr. Phys., Springer-Verlag, Berlin, 1999, xiv+339 pp. | MR | Zbl
[36] G. Gallavotti, Foundations of fluid dynamics, Texts Monogr. Phys., Springer-Verlag, Berlin, 2002, xviii+513 pp. | MR | Zbl
[37] P. Germain, “Weak-strong uniqueness for the isentropic compressible Navier–Stokes system”, J. Math. Fluid Mech., 13:1 (2011), 137–146 | DOI | MR | Zbl
[38] S. Jiang, Y. Ou, “A blow-up criterion for compressible viscous heat-conductive flows”, Acta Math. Sci. Ser. B Engl. Ed., 30:6 (2010), 1851–1864 | DOI | MR | Zbl
[39] T. Kato, “Remarks on the zero viscosity limit for nonstationary Navier–Stokes flows with boundary”, Seminar on nonlinear partial differential equations, Berkeley, CA, 1983, Math. Sci. Res. Inst. Publ., 2, ed. S. S. Chern, Springer, New York, 1984, 85–98 | DOI | MR | Zbl
[40] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Mathematics and its Applications, 2, 2nd ed., Gordon and Breach, New York–London–Paris, 1969, xviii+224 pp. ; O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatgiz, M., 1961 | MR | Zbl | MR
[41] O. A. Ladyzhenskaya, “Ob odnoznachnoi razreshimosti v tselom trekhmernoi zadachi Koshi dlya uravnenii Nave–Stoksa pri nalichii osevoi simmetrii”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 2, Zap. nauch. sem. LOMI, 7, Izd-vo “Nauka”, Leningrad. otd., L., 1968, 155–177 | MR | Zbl
[42] O. A. Ladyzhenskaya, “Finite-dimensionality of bounded invariant sets for Navier–Stokes systems and other dissipative systems”, J. Soviet Math., 28:5 (1985), 714–726 | DOI | MR | Zbl
[43] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl
[44] P.-L. Lions, Mathematical topics in fluid mechanics, v. 1, Oxford Lecture Ser. Math. Appl., 3, Incompressible models, The Clarendon Press, Oxford Univ. Press, New York, 1996, xiv+237 pp. | MR | Zbl
[45] P.-L. Lions, Mathematical topics in fluid mechanics, v. 2, Oxford Lecture Ser. Math. Appl., 10, Compressible models, The Clarendon Press, Oxford Univ. Press, New York, 1998, xiv+348 pp. | MR | Zbl
[46] A. Matsumura, T. Nishida, “The initial value problem for the equations of motion of viscous and heat-conductive gases”, J. Math. Kyoto Univ., 20:1 (1980), 67–104 | MR | Zbl
[47] A. Matsumura, T. Nishida, “Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids”, Comm. Math. Phys., 89:4 (1983), 445–464 | DOI | MR | Zbl
[48] Y. Qin, Nonlinear parabolic-hyperbolic coupled systems and their attractors, Oper. Theory Adv. Appl., 184, Adv. Partial Differ. Equ. (Basel), Birkhäuser Verlag, Basel, 2008, xvi+465 pp. | MR | Zbl
[49] D. Serre, “The structure of dissipative viscous system of conservation laws”, Phys. D, 239:15 (2010), 1381–1386 | DOI | MR | Zbl
[50] D. Serre, “Viscous system of conservation laws: singular limits”, Nonlinear conservation laws and applications, IMA Vol. Math. Appl., 153, Springer, New York, 2011, 433–445 | DOI | MR | Zbl
[51] T. Tao, Nonlinear dispersive equations. Local and global analysis, CBMS Reg. Conf. Ser. Math., 106, Amer. Math. Soc., Providence, RI, 2006, xvi+373 pp. | DOI | MR | Zbl
[52] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York–Oxford, 1977, x+500 pp. | MR | Zbl
[53] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988, xvi+500 pp. | DOI | MR | Zbl
[54] A. Valli, “An existence theorem for compressible viscous fluids”, Ann. Mat. Pura Appl. (4), 130:1 (1982), 197–213 | DOI | MR | Zbl
[55] A. Valli, “A correction to the paper: An existence theorem for compressible viscous fluids”, Ann. Mat. Pura Appl. (4), 132:1 (1982), 399–400 | DOI | MR | Zbl
[56] A. Valli, M. Zajaczkowski, “Navier–Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case”, Comm. Math. Phys., 103:2 (1986), 259–296 | DOI | MR | Zbl
[57] C. H. Wilcox, Sound propagation in stratified fluids, Appl. Math. Sci., 50, Springer-Verlag, New York, 1984, ix+198 pp. | DOI | MR | Zbl