Dynamical systems approach to models in fluid mechanics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 331-357

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a survey of some recent results on the asymptotic behaviour for large time of solutions of models of complete fluid systems, meaning models including compressibility, viscosity, and/or heat conductivity of the fluids. Several concepts of solutions are introduced, and the existence of global-in-time trajectories is discussed along with general questions concerning well-posedness. Dissipativity properties are considered, and in particular, the existence of absorbing sets and the asymptotic compactness of trajectories. Finally, the existence of attractors, convergence to equilibria, and other qualitative aspects of the long-time behaviour are studied. Bibliography: 57 titles.
Keywords: Navier–Stokes–Fourier system, weak solution, long-time behaviour.
@article{RM_2014_69_2_a4,
     author = {E. Feireisl},
     title = {Dynamical systems approach to models in fluid mechanics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {331--357},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_2_a4/}
}
TY  - JOUR
AU  - E. Feireisl
TI  - Dynamical systems approach to models in fluid mechanics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 331
EP  - 357
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_2_a4/
LA  - en
ID  - RM_2014_69_2_a4
ER  - 
%0 Journal Article
%A E. Feireisl
%T Dynamical systems approach to models in fluid mechanics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 331-357
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2014_69_2_a4/
%G en
%F RM_2014_69_2_a4
E. Feireisl. Dynamical systems approach to models in fluid mechanics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 331-357. http://geodesic.mathdoc.fr/item/RM_2014_69_2_a4/