Mots-clés : Vlasov–Poisson equations
@article{RM_2014_69_2_a3,
author = {A. L. Skubachevskii},
title = {Vlasov{\textendash}Poisson equations for a two-component plasma in a~homogeneous magnetic field},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {291--330},
year = {2014},
volume = {69},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_2_a3/}
}
TY - JOUR AU - A. L. Skubachevskii TI - Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 291 EP - 330 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2014_69_2_a3/ LA - en ID - RM_2014_69_2_a3 ER -
A. L. Skubachevskii. Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 291-330. http://geodesic.mathdoc.fr/item/RM_2014_69_2_a3/
[1] R. Alexandre, “Weak solutions of the Vlasov–Poisson initial boundary value problem”, Math. Methods Appl. Sci., 16:8 (1993), 587–607 | DOI | MR | Zbl
[2] A. A. Arsen'ev, “Existence in the large of a weak solution of Vlasov's system of equations”, U.S.S.R. Comput. Math. Math. Phys., 15:1 (1975), 131–143 | DOI | MR | Zbl
[3] A. A. Arsen'ev, “Existence and uniqueness of the classical solution of Vlasov's system of equations”, U.S.S.R. Comput. Math. Math. Phys., 15:5 (1975), 252–258 | DOI | MR | Zbl
[4] A. A. Arsen'ev, “Construction of a turbulent measure for Vlasov's system of equations”, Math. USSR-Sb., 31:1 (1977), 9–27 | DOI | MR | Zbl
[5] A. A. Arsen'ev, “The existence of generalized and stationary statistical solutions of a system of Vlasov equations in a bounded domain”, Differ. Equ., 15:7 (1980), 892–902 | MR | Zbl
[6] A. A. Arsenev, Lektsii o kineticheskikh uravneniyakh, Nauka, M., 1992, 216 pp. | MR | Zbl
[7] C. Bardos, P. Degond, “Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2:2 (1985), 101–118 | MR | Zbl
[8] J. Batt, “Ein Existenzbeweis für die Vlasov-Gleichung der Stellardynamic bei gemittelter Dichte”, Arch. Ration. Mech. Anal., 13 (1963), 296–308 | DOI | MR | Zbl
[9] J. Batt, “Global symmetric solutions of the initial value problem of stellar dynamics”, J. Differential Equations, 25:3 (1977), 342–364 | DOI | MR | Zbl
[10] J. Batt, “Recent developmets in the mathematical investigation of the initial value problem of stellar dynamics and plasma physics”, Ann. Nuclear Energy, 7:4-5 (1980), 213–217 | DOI | MR
[11] J. Batt, H. Berestycki, P. Degond, B. Perthame, “Some families of solutions of the Vlasov–Poisson system”, Arch. Ration. Mech. Anal., 104:1 (1988), 79–103 | DOI | MR | Zbl
[12] J. Batt, K. Fabian, “Stationary solutions of the relativistic Vlasov–Maxwell system of plasma physics”, Chinese Ann. Math. Ser. B, 14:3 (1993), 253–278 | MR | Zbl
[13] J. Batt, W. Faltenbacher, E. Horst, “Stationary spherically symmetric models in stellar dynamics”, Arch. Ration. Mech. Anal., 93:2 (1986), 159–183 | DOI | MR | Zbl
[14] J. Batt, G. Rein, “Global classical solutions of the periodic Vlasov–Poisson system in three dimensions”, C. R. Acad. Sci. Paris Sér. I Math., 313:6 (1991), 411–416 | MR | Zbl
[15] J. Batt, G. Rein, “A rigorous stability result for the Vlasov–Poisson system in three dimensions”, Ann. Mat. Pura Appl. (4), 164:1 (1993), 133–154 | DOI | MR | Zbl
[16] N. Ben Abdallah, “Weak solutions of the initial-boundary value problem for the Vlasov–Poisson system”, Math. Meth. Appl. Sci., 17:6 (1994), 451–476 | DOI | MR | Zbl
[17] N. Ben Abdallah, F. Méhats, “On a Vlasov–Schrödinger–Poisson model”, Comm. Partial Differential Equations, 29:1-2 (2004), 173–206 | DOI | MR | Zbl
[18] S. Benachour, “Analyticité des solutions des équations de Vlasov–Poisson”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16:1 (1989), 83–104 | MR | Zbl
[19] O. V. Besov, “O nekotorykh svoistvakh prostranstva $H_p^{(r_1,\dots,r_m)}$”, Izv. vuzov. Matem., 1960, no. 1, 16–23 | MR | Zbl
[20] M. Bostan, “Boundary value problem for the $N$-dimensional time periodic Vlasov–Poisson system”, Math. Methods Appl. Sci., 29:15 (2006), 1801–1848 | DOI | MR | Zbl
[21] F. Bouchut, “Global weak solutions of Vlasov–Poisson system for small electrons mass”, Comm. Partial Differential Equations, 16:8-9 (1991), 1337–1365 | DOI | MR | Zbl
[22] F. Bouchut, “Renormalized solutions to the Vlasov equation with coefficients of bounded variation”, Arch. Ration. Mech. Anal., 157:1 (2001), 75–90 | DOI | MR | Zbl
[23] W. Braun, K. Hepp, “The Vlasov dynamics and its fluctuations in the $1/N$ limit of interacting classical particles”, Comm. Math. Phys., 56:2 (1977), 101–113 | DOI | MR | Zbl
[24] E. Caglioti, C. Maffei, “Time asymptotics for solutions of Vlasov–Poisson equation in a circle”, J. Statist. Phys., 92:1-2 (1998), 301–323 | DOI | MR | Zbl
[25] D. Gogny, P. L. Lions, “Sur les états d'équilibre pour les densités électroniques dans les plasmas”, RAIRO Modél. Math. Anal. Numér., 23:1 (1989), 137–153 | MR | Zbl
[26] J. Cooper, A. Klimas, “Boundary value problem for the Vlasov–Maxwell equation in one dimension”, J. Math. Anal. Appl., 75:2 (1980), 306–329 | DOI | MR | Zbl
[27] P. Degond, “Global existence of smooth solutions for the Vlasov–Fokker–Planck equation in 1 and 2 space dimensions”, Ann. Sci. École Norm. Sup. (4), 19:4 (1986), 519–542 | MR | Zbl
[28] P. Degond, “Spectral theory of the linearized Vlasov–Poisson equation”, Trans. Amer. Math. Soc., 294:2 (1986), 435–453 | DOI | MR | Zbl
[29] P. Degond, “Local existence of solutions of the Vlasov–Maxwell equations and convergence to the Vlasov–Poisson equations for infinite light velocity”, Math. Methods Appl. Sci., 8:4 (1986), 533–558 | DOI | MR | Zbl
[30] P. Degond, “Solutions stationnaires explicites du système de Vlasov–Maxwell relativiste”, C. R. Acad. Sci. Paris Sér. I Math., 310:7 (1990), 607–612 | MR | Zbl
[31] P. Degond, P.-A. Raviart, “An asymptotic analysis of the one-dimensional Vlasov–Poisson system: the Child–Langmuir law”, Asymptotic Anal., 4:3 (1991), 187–214 | MR | Zbl
[32] P. Degond, P.-A. Raviart, “On a penalization of the Child–Langmuir emission condition for the one-dimensional Vlasov–Poisson equation”, Asymptotic Anal., 6:1 (1992), 1–27 | MR
[33] R. DiPerna, P. L. Lions, “Solutions globales d'équations du type Vlasov–Poisson”, C. R. Acad. Sci. Paris Sér. I Math., 307:12 (1988), 655–658 | MR | Zbl
[34] R. J. DiPerna, P. L. Lions, “Global weak solutions of Vlasov–Maxwell systems”, Comm. Pure Appl. Math., 42:6 (1989), 729–757 | DOI | MR | Zbl
[35] R. L. Dobrushin, “Vlasov equations”, Funct. Anal. Appl., 13:2 (1979), 115–123 | DOI | MR | Zbl
[36] J. Duniec, “On an initial value problem for a nonlinear system of Vlasov–Maxwell equations”, Bull. Acad. Polon. Sci. Sér. Sci. Tech., 21 (1973), 157–162 | MR | Zbl
[37] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | MR | MR | Zbl | Zbl
[38] R. T. Glassey, J. Schaeffer, “On symmetric solutions of the relativistic Vlasov–Poisson system”, Comm. Math. Phys., 101:4 (1985), 459–473 | DOI | MR | Zbl
[39] R. T. Glassey, J. W. Schaeffer, “Global existence for the relativistic Vlasov–Maxwell system with nearly neutral initial data”, Comm. Math. Phys., 119:3 (1988), 353–384 | DOI | MR | Zbl
[40] R. Glassey, J. Schaeffer, “Control of velocities generated in a two-dimensional collisionless plasma with symmetry”, Transport Theory Statist. Phys., 17:5-6 (1988), 467–560 | DOI | MR | Zbl
[41] R. Glassey, J. Schaeffer, “Time decay for solutions to the linearized Vlasov equation”, Transport Theory Statist. Phys., 23:4 (1994), 411–453 | DOI | MR | Zbl
[42] R. Glassey, J. Schaeffer, “On time decay rates in Landau damping”, Comm. Partial Differential Equations, 20:3-4 (1995), 647–676 | DOI | MR | Zbl
[43] R. Glassey, J. Schaeffer, “The ‘two and one-half dimensional’ relativistic Vlasov–Maxwell system”, Comm. Math. Phys., 185:2 (1997), 257–284 | DOI | MR | Zbl
[44] R. T. Glassey, W. A. Strauss, “Sinqularity formation in a collisionless plasma could occur only at high velocities”, Arch. Ration. Mech. Anal., 92:1 (1986), 59–90 | DOI | MR | Zbl
[45] R. T. Glassey, W. A. Strauss, “Absence of shocks in an initially dilute collisionless plasma”, Comm. Math. Phys., 113:2 (1987), 191–208 | DOI | MR | Zbl
[46] R. T. Glassey, W. A. Strauss, “High velocity particles in a collisionless plasma”, Math. Methods Appl. Sci., 9:1 (1987), 46–52 | DOI | MR | Zbl
[47] W. Greenberg, C. van der Mee, V. Protopopescu, Boundary value problems in abstract kinetic theory, Oper. Theory Adv. Appl., 23, Birkhäuser Verlag, Basel, 1987, x+524 pp. | DOI | MR | Zbl
[48] C. Greengard, P.-A. Raviart, “A boundary value problem for the stationary Vlasov–Poisson equations: the plane diode”, Comm. Pure Appl. Math., 43:4 (1990), 473–507 | DOI | MR | Zbl
[49] Y. Guo, “Global weak solutions of the Vlasov–Maxwell system with boundary conditions”, Comm. Math. Phys., 154:2 (1993), 245–263 | DOI | MR | Zbl
[50] Y. Guo, “Regularity for the Vlasov equations in a half space”, Indiana Univ. Math. J., 43:1 (1994), 255–320 | DOI | MR | Zbl
[51] Y. Guo, “Singular solutions of the Vlasov–Maxwell system on a half line”, Arch. Rational Mech. Anal., 131:3 (1995), 241–304 | DOI | MR | Zbl
[52] Y. Guo, C. Grotta Ragazzo, “On steady states in a collisionless plasma”, Comm. Pure Appl. Math., 49:11 (1996), 1145–1174 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[53] M. Hesse, K. Schindler, “Bifurcation of current sheets in plasmas”, Phys. Fluids, 29:8 (1986), 2484–2492 | DOI | MR | Zbl
[54] J. P. Holloway, J. J. Dorning, “Nonlinear but small amplitude longitudinal plasma waves”, Modern mathematical methods in transport theory (Blacksburg, VA, 1989), Oper. Theory Adv. Appl., 51, Birkhäuser, Basel, 1991, 155–179 | DOI | MR | Zbl
[55] E. Horst, “On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation. I. General theory”, Math. Methods Appl. Sci., 3:1 (1981), 229–248 | DOI | MR | Zbl
[56] E. Horst, “On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation. II. Special cases”, Math. Methods Appl. Sci., 4:1 (1982), 19–32 | DOI | MR | Zbl
[57] E. Horst, “On the asymptotic growth of the solutions of the Vlasov–Poisson system”, Math. Methods Appl. Sci., 16:2 (1993), 75–85 | DOI | MR | Zbl
[58] E. Horst, R. Hunze, “Weak solutions of the initial value problem for the unmodified non-linear Vlasov equation”, Math. Methods Appl. Sci., 6:1 (1984), 262–279 | DOI | MR | Zbl
[59] H. J. Hwang, “Regularity for the Vlasov–Poisson system in a convex domain”, SIAM J. Math. Anal., 36:1 (2004), 121–171 (electronic) | DOI | MR | Zbl
[60] H. J. Hwang, J. J. L. Velázquez, “On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem”, Indiana Univ. Math. J., 58:6 (2009), 2623–2660 | DOI | MR | Zbl
[61] H. J. Hwang, J. J. L. Velázquez, “On global existence for the Vlasov–Poisson system in a half space”, J. Differential Equations, 247:6 (2009), 1915–1948 | DOI | MR | Zbl
[62] R. Illner, H. Neunzert, “An existence theorem for the unmodified Vlasov equation”, Math. Methods Appl. Sci., 1:4 (1979), 530–544 | DOI | MR | Zbl
[63] S. V. Iordanskii, “O zadache Koshi dlya kineticheskogo uravneniya plazmy”, Sbornik statei. Posvyaschaetsya akademiku Mikhailu Alekseevichu Lavrentevu k ego shestidesyatiletiyu, Tr. MIAN SSSR, 60, Izd-vo AN SSSR, M., 1961, 181–194 | MR | Zbl
[64] M. Isichenko, “Nonlinear Landau damping in collisionless plasma and inviscid fluid”, Phys. Rev. Lett., 78:12 (1997), 2369–2372 | DOI
[65] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, Izd-vo Mosk. un-ta, M., 1967, 209–292 | MR | Zbl
[66] V. V. Kozlov, “The generalized Vlasov kinetic equation”, Russian Math. Surveys, 63:4 (2008), 691–726 | DOI | DOI | MR | Zbl
[67] V. V. Kozlov, Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008, 204 pp.
[68] V. V. Kozlov, “The Vlasov kinetic equation, dynamics of continuum and turbulence”, Regul. Chaotic Dyn., 16:6 (2011), 602–622 | DOI | MR | Zbl
[69] R. Kurth, “Das Anfangswertproblem der Stellardynamik”, Z. Astrophys., 30 (1952), 213–229 | MR | Zbl
[70] L. D. Landau, “O kolebaniyakh v elektronnoi plazme”, ZhETF, 16 (1946), 574–586 | MR | Zbl
[71] M. Lemou, F. Méhats, P. Raphael, “The orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system”, Arch. Ration. Mech. Anal., 189:3 (2008), 425–468 | DOI | MR | Zbl
[72] M. A. Leontovich, B. B. Kadomtsev (red.), Voprosy teorii plazmy, vyp. 11, Energoizdat, M., 1982, 238 pp. | MR
[73] E. M. Lifshitz, L. P. Pitaevskiĭ, Course of theoretical physics, v. 10, Pergamon Internat. Library Sci. Tech. Engrg. Social Stud., Pergamon Press, Oxford–Elmsford, NY, 1981, xi+452 pp. | MR | MR | Zbl
[74] P. L. Lions, B. Perthame, “Régularité des solutions du système de Vlasov–Poisson en dimension 3”, C. R. Acad. Sci. Paris Sér. I Math., 311:4 (1990), 205–210 | MR | Zbl
[75] P. L. Lions, B. Perthame, “Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system”, Invent. Math., 105:1 (1991), 415–430 | DOI | MR | Zbl
[76] G. Loeper, “Uniqueness of the solution to the Vlasov–Poisson system with bounded density”, J. Math. Pures Appl. (9), 86:1 (2006), 68–79 | DOI | MR | Zbl
[77] S. Mancini, S. Totaro, “Vlasov equation with non-homogeneous boundary conditions”, Math. Methods Appl. Sci., 23:7 (2000), 601–614 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[78] C. Marchioro, M. Pulvirenti, “A note on the nonlinear stability of a spatially symmetric Vlasov–Poisson flow”, Math. Methods Appl. Sci., 8:2 (1986), 284–288 | DOI | MR | Zbl
[79] Yu. A. Markov, G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Suschestvovanie statsionarnykh reshenii uravnenii Vlasova–Maksvella i nekotorye ikh tochnye resheniya”, Matem. modelirovanie, 1:6 (1989), 95–107 | MR | Zbl
[80] Yu. A. Markov, G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Semeistvo reshenii sistemy Vlasova–Maksvella i ikh ustoichivost”, Matem. modelirovanie, 2:12 (1990), 88–101 | MR | Zbl
[81] Yu. Markov, G. Rudykh, N. Sidorov, A. Sinitsyn, D. Tolstonogov, “Steady-state solutions of the Vlasov–Maxwell system and their stability”, Acta Appl. Math., 28:3 (1992), 253–293 | DOI | MR | Zbl
[82] V. P. Maslov, “Equations of the self-consistent field”, J. Soviet Math., 11:1 (1979), 123–195 | DOI | MR | Zbl
[83] V. P. Maslov, M. V. Fedoryuk, “The linear theory of Landau damping”, Math. USSR-Sb., 55:2 (1986), 437–465 | DOI | MR | Zbl
[84] S. Mischler, “On the trace problem for solutions of the Vlasov equation”, Comm. Partial Differential Equations, 25:7-8 (2000), 1415–1443 | DOI | MR | Zbl
[85] K. Miyamoto, Fundamentals of plasma physics and controlled fusion, Iwanami Book Service Centre, Tokyo, 1997, 401 pp.
[86] C. Mouhot, C. Villani, “On Landau damping”, Acta Math., 207:1 (2011), 29–201 | DOI | MR | Zbl
[87] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl
[88] H. Neunzert, “An introduction to the nonlinear Boltzman–Vlasov equation”, Kinetic theories and the Boltzmann equation (Montecatini, 1981), Lecture Notes in Math., 1048, Springer, Berlin, 1984, 60–110 | DOI | MR | Zbl
[89] H. Neunzert, K. H. Petry, “Ein Existenzsatz für die Vlasov-Gleichung mit selbstkonsistentem Magnefeld”, Math. Methods Appl. Sci., 2:4 (1980), 429–444 | DOI | MR | Zbl
[90] K. Pfaffelmoser, “Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data”, J. Differential Equations, 95:2 (1992), 281–303 | DOI | MR | Zbl
[91] S. I. Pokhozhaev, “On stationary solutions of the Vlasov–Poisson equations”, Differ. Equ., 46:4 (2010), 530–537 | DOI | MR | Zbl
[92] M. Rammaha, “Global solutions of two-dimensional relativistic Vlasov–Poisson system”, Transport Theory Statist. Phys., 16:1 (1987), 61–87 | DOI | MR | Zbl
[93] G. Rein, “Generic global solutions of the relativistic Vlasov–Maxwell system of plasma physics”, Comm. Math. Phys., 135:1 (1990), 41–78 | DOI | MR | Zbl
[94] G. Rein, “A two-species plasma in the limit of large ion mass”, Math. Methods Appl. Sci., 13:2 (1990), 159–167 | DOI | MR | Zbl
[95] G. Rein, “Existence of stationary, collisionless plasmas in bounded domains”, Math. Methods Appl. Sci., 15:5 (1992), 365–374 | DOI | MR | Zbl
[96] G. Rein, “Non-linear stability for the Vlasov–Poisson system – the energy-Casimir method”, Math. Methods Appl. Sci., 17:14 (1994), 1129–1140 | DOI | MR | Zbl
[97] G. Rein, “Growth estimates for the solutions of the Vlasov–Poisson system in the plasma physics case”, Math. Nachr., 191:1 (1998), 269–278 | DOI | MR | Zbl
[98] G. Rein, A. D. Rendall, “Global existence of classical solutions to the Vlasov–Poisson system in a three-dimensional, cosmological setting”, Arch. Ration. Mech. Anal., 126:2 (1994), 183–201 | DOI | MR | Zbl
[99] G. Rein, A. D. Rendall, “Erratum: ‘Global existence of solutions of the spherically symmetric Vlasov–Einstein system with small initial data’”, Comm. Math. Phys., 176:2 (1996), 475–478 | DOI | MR | Zbl
[100] G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Stationary solutions of a system of Vlasov–Maxwell equations”, Soviet Phys. Dokl., 33:9 (1989), 673–674 | MR
[101] G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Bifurcating stationary solutions of a two-particle Vlasov–Maxwell system”, Soviet Phys. Dokl., 34:2 (1989), 122–123 | MR
[102] A. A. Samarskiĭ, “Some problems of the theory of differential equations”, Differ. Equ., 16:11 (1981), 1221–1228 | MR
[103] J. Schäffer, “The classical limit of the relativistic Vlasov–Maxwell system”, Comm. Math. Phys., 104:3 (1986), 403–421 | DOI | MR | Zbl
[104] J. Schäffer, “Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions”, Comm. Partial Differential Equations, 16:8-9 (1991), 1313–1335 | DOI | MR | Zbl
[105] N. A. Sidorov, A. V. Sinitsyn, “On bifurcation of solutions to the Vlasov–Maxwell system”, Sib. Math. J., 37:6 (1996), 1199–1211 | DOI | MR | Zbl
[106] N. A. Sidorov, A. V. Sinitsyn, “Nontrivial solutions and bifurcation points of the Vlasov–Maxwell system”, Dokl. Math., 54:1 (1996), 506–509 | MR | Zbl
[107] N. A. Sidorov, A. V. Sinitsyn, “Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov–Maxwell system”, Math. Notes, 62:2 (1997), 223–243 | DOI | DOI | MR | Zbl
[108] N. A. Sidorov, A. V. Sinitsyn, “Statsionarnaya sistema Vlasova–Maksvella v ogranichennykh oblastyakh”, Nelineinyi analiz i nelineinye differentsialnye uravneniya, eds. V. A. Trenogin, A. F. Filippov, Fizmatlit, M., 2003, 50–88 | MR | Zbl
[109] A. A. Skovoroda, Magnitnye lovushki dlya uderzhaniya plazmy, Fizmatlit, M., 2009, 216 pp.
[110] A. L. Skubachevskiĭ, “On the unique solvability of mixed problems for the system of Vlasov–Poisson equations in a half-space”, Dokl. Math., 85:2 (2012), 255–258 | DOI | MR | Zbl
[111] A. L. Skubachevskii, “Initial-boundary value problems for the Vlasov–Poisson equations in a half-space”, Proc. Steklov Inst. Math., 283 (2013), 197–225 | DOI
[112] H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Math. Library, 18, VEB Deutscher Verlag der Wissenschaften, Berlin; North-Holland Publishing Co., Amsterdam–New York, 1978, 528 pp. | MR | MR | MR | Zbl | Zbl | Zbl
[113] S. Ukai, T. Okabe, “On classical solutions in the large in time of two-dimensional Vlasov's equation”, Osaka J. Math., 15:2 (1978), 245–261 | MR | Zbl
[114] V. V. Vedenyapin, “Boundary value problems for a stationary Vlasov equation”, Soviet Math. Dokl., 34:2 (1987), 335–338 | MR | Zbl
[115] V. V. Vedenyapin, “Classification of stationary solutions of the Vlasov equation on a torus and a boundary value problem”, Russian Acad. Sci. Dokl. Math., 45:2 (1993), 459–462 | MR | Zbl
[116] V. V. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001, 112 pp.
[117] A. A. Vlasov, “O vibratsionnykh svoistvakh elektronnogo gaza”, ZhETF, 8:3 (1938), 291–318 | Zbl
[118] A. A. Vlasov, Many-particle theory and its application to plasma, Gordon and Breach Science Publishers, Inc., New York, 1961, 413 pp. | MR
[119] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, Nauka, M., 1966, 356 pp. | MR
[120] A. A. Vlasov, Nelokalnaya statisticheskaya mekhanika, Nauka, M., 1978, 264 pp. | MR
[121] Y.-H. Wan, “Nonlinear stability of stationary spherically symmetric models in stellar dynamics”, Arch. Ration. Mech. Anal., 112:1 (1990), 83–85 | DOI | MR | Zbl
[122] J. Weckler, “On the initial-boundary-value problem for the Vlasov–Poisson system: existence of weak solutions and stability”, Arch. Ration. Mech. Anal., 130:2 (1995), 145–161 | DOI | MR | Zbl
[123] S. Wollman, “Global-in-time solutions of the two-dimensional Vlasov–Poisson systems”, Comm. Pure Appl. Math., 33:2 (1980), 173–197 | DOI | MR | Zbl
[124] S. Wollman, “The spherically symmetric Vlasov–Poisson system”, J. Differential Equations, 35:1 (1980), 30–35 | DOI | MR | Zbl
[125] S. Wollman, “An existence and uniqueness theorem for the Vlasov–Maxwell system”, Comm. Pure Appl. Math., 37:4 (1984), 457–462 | DOI | MR | Zbl
[126] S. Wollman, “The use of the heat operator in an existence theory problem of the Vlasov equation”, Transport Theory Statist. Phys., 14:5 (1985), 567–593 | DOI | MR | Zbl
[127] P. Zhidkov, “On local smooth solutions for the Vlasov equation with the potential of interactions $\pm r^{-2}$”, Int. J. Math. Math. Sci., 2004:61 (2004), 3275–3283 | DOI | MR | Zbl