Near soliton dynamics and singularity formation for $L^2$ critical problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 261-290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey reviews the state of the art concerning singularity formation for two canonical dispersive problems: the $L^2$ critical non-linear Schrödinger equation and the $L^2$ critical generalized KdV equation. In particular, the currently very topical question of classifying flows with initial data near a soliton is addressed. Bibliography: 72 titles.
Keywords: non-linear Schrödinger equation, critical equation, generalized Korteweg–de Vries equation, blowup, blowup profile, qualitative behaviour of solutions, non-linear dispersive equation.
Mots-clés : soliton
@article{RM_2014_69_2_a2,
     author = {Y. Martel and F. Merle and P. Raphael and J. Szeftel},
     title = {Near soliton dynamics and singularity formation for $L^2$ critical problems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {261--290},
     year = {2014},
     volume = {69},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_2_a2/}
}
TY  - JOUR
AU  - Y. Martel
AU  - F. Merle
AU  - P. Raphael
AU  - J. Szeftel
TI  - Near soliton dynamics and singularity formation for $L^2$ critical problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 261
EP  - 290
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_2_a2/
LA  - en
ID  - RM_2014_69_2_a2
ER  - 
%0 Journal Article
%A Y. Martel
%A F. Merle
%A P. Raphael
%A J. Szeftel
%T Near soliton dynamics and singularity formation for $L^2$ critical problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 261-290
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2014_69_2_a2/
%G en
%F RM_2014_69_2_a2
Y. Martel; F. Merle; P. Raphael; J. Szeftel. Near soliton dynamics and singularity formation for $L^2$ critical problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 261-290. http://geodesic.mathdoc.fr/item/RM_2014_69_2_a2/

[1] V. Banica, R. Carles, T. Duyckaerts, “Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation”, Comm. Partial Differential Equations, 36:3 (2010), 487–531 | DOI | MR | Zbl

[2] I. Bejenaru, D. Tataru, Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions, Mem. Amer. Math. Soc., 228, No 1069, 2014, 108 pp. ; 2010, 95 pp., arXiv: 1009.1608 | DOI

[3] H. Berestycki, T. Cazenave, “Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires”, C. R. Acad. Sci. Paris Sér. I Math., 293:9 (1981), 489–492 | MR | Zbl

[4] A. Blanchet, J. A. Carrillo, N. Masmoudi, “Infinite time aggregation for the critical Patlak–Keller–Segel model in $\mathbb R^2$”, Comm. Pure Appl. Math., 61:10 (2008), 1449–1481 | DOI | MR | Zbl

[5] T. Boulenger, Explosion des solutions de Schrödinger de masse critique sur une variété riemannienne, thèse de doctorat en mathématiques, Université Paris-Sud XI, Orsay, 2012, 209 pp.

[6] J. Bourgain, W. Wang, “Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1-2 (1997), 197–215 | MR | Zbl

[7] T. Cazenave, F. B. Weissler, “Some remarks on the nonlinear Schrödinger equation in the critical case”, Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), Lecture Notes in Math., 1394, Springer, Berlin, 1989, 18–29 | DOI | MR | Zbl

[8] T. Cazenave, Semilinear Schrödinger equations, Courant Lect. Notes Math., 10, New York Univ., Courant Inst. Math. Sci., New York, NY; Amer. Math. Soc., Providence, RI, 2003, xiv+323 pp. | MR | Zbl

[9] B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, 2011, 36 pp., arXiv: 1104.1114

[10] R. Donninger, J. Krieger, “Nonscattering solutions and blowup at infinity for the critical wave equation”, Math. Ann., 357:1 (2013), 89–163 ; (2012 (v3 – 2013)), 53 pp., arXiv: 1201.3258 | DOI | MR | Zbl

[11] T. Duyckaerts, C. E. Kenig, F. Merle, “Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case”, J. Eur. Math. Soc. (JEMS), 14:5 (2012), 1389–1454 | DOI | MR | Zbl

[12] T. Duyckaerts, C. Kenig, F. Merle, Classification of radial solutions of the focusing, energy-critical wave equation, 2012, 47 pp., arXiv: 1204.0031

[13] T. Duyckaerts, F. Merle, “Dynamics of threshold solutions for energy-critical wave equation”, Int. Math. Res. Pap. IRMP, 2008, rpn002, 67 pp. | MR | Zbl

[14] T. Duyckaerts, F. Merle, “Dynamic of threshold solutions for energy-critical NLS”, Geom. Funct. Anal., 18:6 (2009), 1787–1840 | DOI | MR | Zbl

[15] G. Fibich, N. Gavish, X.-P. Wang, “Singular ring solutions of critical and supercritical nonlinear Schrödinger equations”, Phys. D, 231:1 (2007), 55–86 | DOI | MR | Zbl

[16] G. Fibich, F. Merle, P. Raphaël, “Proof of a spectral property related to the singularity formation for the $L^2$ critical nonlinear Schrödinger equation”, Phys. D, 220:1 (2006), 1–13 | DOI | MR | Zbl

[17] J. Ginibre, G. Velo, “On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case”, J. Funct. Anal., 32:1 (1979), 1–32 | DOI | MR | Zbl

[18] L. Glangetas, F. Merle, “Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I”, Comm. Math. Phys., 160:1 (1994), 173–215 | DOI | MR | Zbl

[19] S. Gustafson, K. Nakanishi, T.-P. Tsai, “Asymptotic stability, concentration and oscillation in harmonic map heat-flow, Landau–Lifschitz and Schrödinger maps on $\mathbb{R}^2$”, Comm. Math. Phys., 300:1 (2010), 205–242 | DOI | MR | Zbl

[20] J. Holmer, S. Roudenko, “A class of solutions to the 3D cubic nonlinear Schrödinger equation that blows up on a circle”, Appl. Math. Res. Express AMRX, 2011, no. 1, 23–94 | MR | Zbl

[21] J. Holmer, S. Roudenko, “Blow-up solutions on a sphere for the 3D quintic NLS in the energy space”, Anal. PDE, 5:3 (2012), 475–512 | DOI | MR | Zbl

[22] T. Kato, “On the Cauchy problem for the (generalized) Korteweg–de Vries equation”, Studies in applied mathematics, Adv. Math. Suppl. Stud., 8, Academic Press, New York, 1983, 93–128 | MR | Zbl

[23] C. E. Kenig, F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case”, Invent. Math., 166:3 (2006), 645–675 | DOI | MR | Zbl

[24] C. E. Kenig, G. Ponce, L. Vega, “Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle”, Comm. Pure Appl. Math., 46:4 (1993), 527–620 | DOI | MR | Zbl

[25] C. E. Kenig, G. Ponce, L. Vega, “On the concentration of blow up solutions for the generalized KdV equation critical in $L^2$”, Nonlinear wave equations (Providence, RI, 1998), Contemp. Math., 263, Amer. Math. Soc., Providence, RI, 2000, 131–156 | DOI | MR | Zbl

[26] R. Killip, S. Kwon, S. Shao, M. Visan, “On the mass-critical generalized KdV equation”, Discrete Contin. Dyn. Syst., 32:1 (2012), 191–221 | DOI | MR | Zbl

[27] J. Krieger, E. Lenzmann, P. Raphaël, “Nondispersive solutions to the $L^2$-critical half-wave equation”, Arch. Ration. Mech. Anal., 209:1 (2013), 61–129 ; (2012), 51 pp., arXiv: 1203.2476 | DOI | MR | Zbl

[28] J. Krieger, K. Nakanishi, W. Schlag, “Global dynamics away from the ground state for the energy-critical nonlinear wave equation”, Amer. J. Math., 135:4 (2013), 935–965 ; (2010), 26 pp., arXiv: 1010.3799 | DOI | MR | Zbl

[29] J. Krieger, W. Schlag, “Non-generic blow-up solutions for the critical focusing NLS in 1-D”, J. Eur. Math. Soc. (JEMS), 11:1 (2009), 1–125 | DOI | MR | Zbl

[30] J. Krieger, W. Schlag, D. Tataru, “Renormalization and blow up for charge one equivariant critical wave maps”, Invent. Math., 171:3 (2008), 543–615 | DOI | MR | Zbl

[31] J. Krieger, W. Schlag, D. Tataru, “Slow blow-up solutions for the $H^1(\mathbb{R}^3)$ critical focusing semilinear wave equation”, Duke Math. J., 147:1 (2009), 1–53 | DOI | MR | Zbl

[32] M. J. Landman, G. C. Papanicolaou, C. Sulem, P.-L. Sulem, “Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension”, Phys. Rev. A (3), 38:8 (1988), 3837–3843 | DOI | MR

[33] P.-L. Lions, “The concentration-compactness principle in the calculus of variations. The locally compact case. I”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1:2 (1984), 109–145 | MR | Zbl

[34] Y. Martel, F. Merle, “A Liouville theorem for the critical generalized Korteweg–de Vries equation”, J. Math. Pures Appl. (9), 79:4 (2000), 339–425 | DOI | MR | Zbl

[35] Y. Martel, F. Merle, “Instability of solitons for the critical generalized Korteweg–de Vries equation”, Geom. Funct. Anal., 11:1 (2001), 74–123 | DOI | MR | Zbl

[36] Y. Martel, F. Merle, “Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation”, Ann. of Math. (2), 155:1 (2002), 235–280 | DOI | MR | Zbl

[37] Y. Martel, F. Merle, “Blow up in finite time and dynamics of blow up solutions for the $L^2$-critical generalized KdV equation”, J. Amer. Math. Soc., 15:3 (2002), 617–664 (electronic) | DOI | MR | Zbl

[38] Y. Martel, F. Merle, “Nonexistence of blow-up solution with minimal $L^2$-mass for the critical gKdV equation”, Duke Math. J., 115:2 (2002), 385–408 | DOI | MR | Zbl

[39] Y. Martel, F. Merle, P. Raphaël, Blow up for the critical gKdV equation I: dynamics near the soliton, 2012, 66 pp., arXiv: 1204.4625

[40] Y. Martel, F. Merle, P. Raphaël, Blow up for the critical gKdV equation II: minimal mass solution, 2012, 59 pp., arXiv: 1204.4624

[41] Y. Martel, F. Merle, P. Raphaël, Blow up for the critical gKdV equation III: exotic regimes, 2012, 44 pp., arXiv: 1209.2510

[42] F. Merle, “Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power”, Duke Math. J., 69:2 (1993), 427–454 | DOI | MR | Zbl

[43] F. Merle, “Nonexistence of minimal blow-up solutions of equations $iu_t=-\Delta u-k(x)|u|^{4/N}u$ in $\mathbb R^N$”, Ann. Inst. H. Poincaré Phys. Théor., 64:1 (1996), 33–85 | MR | Zbl

[44] F. Merle, “Lower bounds for the blowup rate of solutions of the Zakharov equation in dimension two”, Comm. Pure Appl. Math., 49:8 (1996), 765–794 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[45] F. Merle, “Existence of blow-up solutions in the energy space for the critical generalized KdV equation”, J. Amer. Math. Soc., 14:3 (2001), 555–578 | DOI | MR | Zbl

[46] F. Merle, P. Raphael, “Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation”, Geom. Funct. Anal., 13:3 (2003), 591–642 | DOI | MR | Zbl

[47] F. Merle, P. Raphaël, “On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation”, Invent. Math., 156:3 (2004), 565–672 | DOI | MR | Zbl

[48] F. Merle, P. Raphaël, “The blow up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation”, Ann. of Math. (2), 161:1 (2005), 157–222 | DOI | MR | Zbl

[49] F. Merle, P. Raphaël, “Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation”, Comm. Math. Phys., 253:3 (2005), 675–704 | DOI | MR | Zbl

[50] F. Merle, P. Raphaël, “On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation”, J. Amer. Math. Soc., 19:1 (2006), 37–90 (electronic) | DOI | MR | Zbl

[51] F. Merle, P. Raphaël, I. Rodnianski, Blow up dynamics for smooth data equivariant solutions to the energy critical Schrödinger map problem, 2011, 8 pp., arXiv: ; Invent. Math. (to appear) 1102.4308

[52] F. Merle, P. Raphaël, J. Szeftel, “Stable self-similar blow-up dynamics for slightly $L^2$ super-critical NLS equations”, Geom. Funct. Anal., 20:4 (2010), 1028–1071 | DOI | MR | Zbl

[53] F. Merle, P. Raphaël, J. Szeftel, The instability of Bourgain–Wang solutions for the $L^2$ critical NLS, 2010, 41 pp., arXiv: ; Amer. Math. J. (to appear) 1010.5168

[54] F. Merle, P. Raphaël, J. Szeftel, On collapsing ring blow up solutions to the mass supercritical NLS, 2012, 48 pp., arXiv: 1202.5218

[55] K. Nakanishi, W. Schlag, “Global dynamics above the ground state energy for the focusing nonlinear Klein–Gordon equation”, J. Differential Equations, 250:5 (2011), 2299–2333 | DOI | MR | Zbl

[56] K. Nakanishi, W. Schlag, “Global dynamics above the ground state energy for the cubic NLS equation in 3D”, Calc. Var. Partial Differential Equations, 44:1-2 (2012), 1–45 ; (2010 (v2 – 2011)), 47 pp., arXiv: 1007.4025 | DOI | MR | Zbl

[57] G. C. Papanicolaou, C. Sulem, P. L. Sulem, X. P. Wang, “Singular solutions of the Zakharov equations for Langmuir turbulence”, Phys. Fluids B, 3:4 (1991), 969–980 | DOI | MR

[58] G. Perelman, “On the formation of singularities in solutions of the critical nonlinear Schrödinger equation”, Ann. Henri Poincaré, 2:4 (2001), 605–673 | DOI | MR | Zbl

[59] P. Raphaël, “Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation”, Math. Ann., 331:3 (2005), 577–609 | DOI | MR | Zbl

[60] P. Raphaël, “Existence and stability of a solution blowing up on a sphere for an $L^2$-supercritical nonlinear Schrödinger equation”, Duke Math. J., 134:2 (2006), 199–258 | DOI | MR | Zbl

[61] P. Raphaël, “On the singularity formation for the nonlinear Schrödinger equation”, Evolution equations, Lecture notes from the Clay Mathematics Institute Summer School (ETH, Zürich, June 23–July 18, 2008), Clay Math. Proc., 17, Amer. Math. Soc., Providence, RI; Clay Math. Institute, Cambridge, MA, 2013, 269–324 | MR | Zbl

[62] P. Raphaël, I. Rodnianski, “Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang–Mills problems”, Publ. Math. Inst. Hautes Études Sci., 115:1 (2012), 1–122 ; (2009), 89 pp., arXiv: 0911.0692 | DOI | MR | Zbl

[63] P. Raphaël, R. Schweyer, “Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow”, Comm. Pure Appl. Math., 66:3 (2013), 414–480 | DOI | MR | Zbl

[64] P. Raphaël, R. Schweyer, “Slow blow up solutions for the 1-corotational harmonic heat flow”, preprint

[65] P. Raphaël, J. Szeftel, “Standing ring blow up solutions to the N-dimensional quintic nonlinear Schrödinger equation”, Comm. Math. Phys., 290:3 (2009), 973–996 | DOI | MR | Zbl

[66] P. Raphaël, J. Szeftel, “Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS”, J. Amer. Math. Soc., 24:2 (2011), 471–546 | DOI | MR | Zbl

[67] I. Rodnianski, J. Sterbenz, “On the formation of singularities in the critical $O(3)$ $\sigma$-model”, Ann. of Math. (2), 172:1 (2010), 187–242 | DOI | MR | Zbl

[68] Shuanglin Shao, “The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality”, Anal. PDE, 2 (2009), 83–117 | DOI | MR | Zbl

[69] C. Sulem, P. L. Sulem, The nonlinear Schrödinger equation. Self-focusing and wave collapse, Appl. Math. Sci., 139, Springer-Verlag, New York, 1999, xvi+350 pp. | MR | Zbl

[70] M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys., 87:4 (1983), 567–576 | DOI | MR | Zbl

[71] V. E. Zakharov, A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media”, Soviet Physics JETP, 34:1 (1972), 62–69 | MR

[72] Y. Zwiers, “Blow up of supercritical NLS on a ring”, Anal. PDE (to appear)