Green's function asymptotics and sharp interpolation inequalities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 209-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general method is proposed for finding sharp constants for the embeddings of the Sobolev spaces $H^m(\mathscr{M})$ on an $n$-dimensional Riemannian manifold $\mathscr{M}$ into the space of bounded continuous functions, where $m>n/2$. The method is based on an analysis of the asymptotics with respect to the spectral parameter of the Green's function of an elliptic operator of order $2m$ whose square root has domain determining the norm of the corresponding Sobolev space. The cases of the $n$-dimensional torus $\mathbb{T}^n$ and the $n$-dimensional sphere $\mathbb{S}^n$ are treated in detail, as well as certain manifolds with boundary. In certain cases when $\mathscr{M}$ is compact, multiplicative inequalities with remainder terms of various types are obtained. Inequalities with correction terms for periodic functions imply an improvement for the well-known Carlson inequalities. Bibliography: 28 titles.
Keywords: Sobolev inequalities, interpolation inequalities, Green's function, Carlson inequality.
Mots-clés : sharp constants
@article{RM_2014_69_2_a1,
     author = {S. V. Zelik and A. A. Ilyin},
     title = {Green's function asymptotics and sharp interpolation inequalities},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {209--260},
     year = {2014},
     volume = {69},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_2_a1/}
}
TY  - JOUR
AU  - S. V. Zelik
AU  - A. A. Ilyin
TI  - Green's function asymptotics and sharp interpolation inequalities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 209
EP  - 260
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_2_a1/
LA  - en
ID  - RM_2014_69_2_a1
ER  - 
%0 Journal Article
%A S. V. Zelik
%A A. A. Ilyin
%T Green's function asymptotics and sharp interpolation inequalities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 209-260
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2014_69_2_a1/
%G en
%F RM_2014_69_2_a1
S. V. Zelik; A. A. Ilyin. Green's function asymptotics and sharp interpolation inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 209-260. http://geodesic.mathdoc.fr/item/RM_2014_69_2_a1/

[1] V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126 | DOI | DOI | MR | Zbl

[2] M. Bartuccelli, J. Deane, S. Zelik, “Asymptotic expansions and extremals for the critical Sobolev and Gagliardo–Nirenberg inequalities on a torus”, Proc. Roy. Soc. Edinburgh Sect. A, 143:3 (2013), 445–482 | DOI | MR | Zbl

[3] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, v. I, II, Scripta Series in Mathematics, ed. M. H. Taibleson, V. H. Winston Sons, Washington, DC; John Wiley Sons, New York–Toronto–London, 1978, 1979, viii+345 pp., viii+311 pp. | MR | MR | MR | Zbl

[4] H. Brezis, T. Gallouet, “Nonlinear Schrödinger evolution equations”, Nonlinear Anal., 4:4 (1980), 677–681 | DOI | MR | Zbl

[5] F. Carlson, “Une inégalité”, Ark. Mat. Astr. Fys., 25B:1 (1934), 1–5 | Zbl

[6] J. Dolbeault, A. Laptev, M. Loss, “Lieb–Thirring inequalities with improved constants”, J. Eur. Math. Soc. (JEMS), 10:4 (2008), 1121–1126 | DOI | MR | Zbl

[7] A. Eden, C. Foias, “A simple proof of the generalized Lieb–Thirring inequalities in one-space dimension”, J. Math. Anal. Appl., 162:1 (1991), 250–254 | DOI | MR | Zbl

[8] H. M. Edwards, Riemann's zeta function, reprint of the 1974 original, Dover Publications, Inc., Mineola, NY, 2001, xiv+315 pp. | MR | Zbl

[9] T. Ekholm, R. Frank, “Lieb–Thirring inequalities on the half-line with critical exponent”, J. Eur. Math. Soc. (JEMS), 10:3 (2008), 739–755 | DOI | MR | Zbl

[10] R. Frank, A. Laptev, A Lieb–Thirring inequality for spherically symmetric potentials, preprint, 2007

[11] V. N. Gabushin, “On the best approximation of the differentiation operator on the half-line”, Math. Notes, 6:5 (1969), 804–810 | DOI | MR | Zbl

[12] L. Geisinger, A. Laptev, T. Weidl, “Geometrical versions of improved Berezin–Li–Yau inequalities”, J. Spectr. Theory, 1:1 (2011), 87–109 | DOI | MR | Zbl

[13] G. H. Hardy, “A note on two inequalities”, J. London Math. Soc., s1-11:3 (1936), 167–170 | DOI | MR | Zbl

[14] A. A. Ilyin, “Best constants in multiplicative inequalities for sup-norms”, J. London Math. Soc. (2), 58:1 (1998), 84–96 | DOI | MR | Zbl

[15] A. A. Ilyin, “Best constants in Sobolev inequalities on the sphere and in Euclidean space”, J. London Math. Soc. (2), 59:1 (1999), 263–286 | DOI | MR | Zbl

[16] A. A. Ilyin, “Lieb–Thirring inequalities on some manifolds”, J. Spectr. Theory, 2:1 (2012), 57–78 | DOI | MR | Zbl

[17] G. A. Kalyabin, “Sharp constants in inequalities for intermediate derivatives (the Gabushin case)”, Funct. Anal. Appl., 38:3 (2004), 184–191 | DOI | DOI | MR | Zbl

[18] V. I. Krylov, Approximate calculation of integrals, The Macmillan Co., New York–London, 1962, x+357 pp. | MR | MR | Zbl

[19] L. Larsson, L. Maligranda, J. Pečarić, L.-E. Persson, Multiplicative inequalities of Carlson type and interpolation, World Scientific Publishing Co., Hackensack, NJ, 2006, xiv+201 pp. | DOI | MR | Zbl

[20] E. H. Lieb, W. E. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in mathematical physics: essays in honor of Valentine Bargmann, Princeton Ser. Phys., Princeton Univ. Press, Princeton, NJ, 1976, 269–303 | Zbl

[21] G. G. Magaril-Il'yaev, V. M. Tikhomirov, “Kolmogorov-type inequalities for derivatives”, Sb. Math., 188:12 (1997), 1799–1832 | DOI | DOI | MR | Zbl

[22] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971, x+297 pp. | MR | Zbl | Zbl

[23] B. von Sz.-Nagy, “Über integralungleichungen zwischen einer Funktion und ihrer Ableitung”, Acta Univ. Szeged. Sect. Sci. Math., 10 (1941), 64–74 | MR | Zbl

[24] L. V. Taikov, “Kolmogorov-type inequalities and the best formulas for numerical differentiation”, Math. Notes, 4:2 (1968), 631–634 | DOI | MR | Zbl

[25] E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, London, 1939, x+454 pp. | MR | Zbl | Zbl

[26] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR | MR | Zbl | Zbl

[27] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, England; The Macmillan Co., New York, 1944, vi+804 pp. | MR | Zbl

[28] Wenzheng Xie, “Integral representations and $L^\infty$ bounds for solutions of the Helmholtz equation on arbitrary open sets in $\mathbb{R}^2$ and $\mathbb{R}^3$”, Differential Integral Equations, 8:3 (1995), 689–698 | MR | Zbl