Green's function asymptotics and sharp interpolation inequalities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 209-260
Voir la notice de l'article provenant de la source Math-Net.Ru
A general method is proposed for finding sharp constants for the embeddings of the Sobolev spaces $H^m(\mathscr{M})$ on an $n$-dimensional Riemannian manifold $\mathscr{M}$ into the space of bounded continuous functions, where $m>n/2$. The method is based on an analysis of the asymptotics with respect to the spectral parameter of the Green's function of an elliptic operator of order $2m$ whose square root has domain determining the norm of the corresponding Sobolev space. The cases of the $n$-dimensional torus $\mathbb{T}^n$ and the $n$-dimensional sphere $\mathbb{S}^n$ are treated in detail, as well as certain manifolds with boundary. In certain cases when $\mathscr{M}$ is compact, multiplicative inequalities with remainder terms of various types are obtained. Inequalities with correction terms for periodic functions imply an improvement for the well-known Carlson inequalities.
Bibliography: 28 titles.
Keywords:
Sobolev inequalities, interpolation inequalities, Green's function, Carlson inequality.
Mots-clés : sharp constants
Mots-clés : sharp constants
@article{RM_2014_69_2_a1,
author = {S. V. Zelik and A. A. Ilyin},
title = {Green's function asymptotics and sharp interpolation inequalities},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {209--260},
publisher = {mathdoc},
volume = {69},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_2_a1/}
}
TY - JOUR AU - S. V. Zelik AU - A. A. Ilyin TI - Green's function asymptotics and sharp interpolation inequalities JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 209 EP - 260 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2014_69_2_a1/ LA - en ID - RM_2014_69_2_a1 ER -
S. V. Zelik; A. A. Ilyin. Green's function asymptotics and sharp interpolation inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 209-260. http://geodesic.mathdoc.fr/item/RM_2014_69_2_a1/