Non-uniqueness for the Euler equations: the effect of the boundary
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 189-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Rotational initial data is considered for the two-dimensional incompressible Euler equations on an annulus. With use of the convex integration framework it is shown that there exist infinitely many admissible weak solutions (that is, with non-increasing energy) for such initial data. As a consequence, on bounded domains there exist admissible weak solutions which are not dissipative in the sense of Lions, as opposed to the case without physical boundaries. Moreover, it is shown that admissible solutions are dissipative if they are Hölder continuous near the boundary of the domain. Bibliography: 34 titles.
Keywords: non-uniqueness, wild solutions, boundary effects, convex integration, rotational flows.
Mots-clés : Euler equations, dissipative solutions, inviscid limit
@article{RM_2014_69_2_a0,
     author = {C. Bardos and L. Sz\'ekelyhidi and Jr. and E. Wiedemann},
     title = {Non-uniqueness for the {Euler} equations: the~effect of the boundary},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {189--207},
     year = {2014},
     volume = {69},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_2_a0/}
}
TY  - JOUR
AU  - C. Bardos
AU  - L. Székelyhidi
AU  - Jr.
AU  - E. Wiedemann
TI  - Non-uniqueness for the Euler equations: the effect of the boundary
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 189
EP  - 207
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_2_a0/
LA  - en
ID  - RM_2014_69_2_a0
ER  - 
%0 Journal Article
%A C. Bardos
%A L. Székelyhidi
%A Jr.
%A E. Wiedemann
%T Non-uniqueness for the Euler equations: the effect of the boundary
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 189-207
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2014_69_2_a0/
%G en
%F RM_2014_69_2_a0
C. Bardos; L. Székelyhidi; Jr.; E. Wiedemann. Non-uniqueness for the Euler equations: the effect of the boundary. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 189-207. http://geodesic.mathdoc.fr/item/RM_2014_69_2_a0/

[2] C. J. Amick, “Existence of solutions to the nonhomogeneous steady Navier–Stokes equations”, Indiana Univ. Math. J., 33:6 (1984), 817–830 | DOI | MR | Zbl

[3] C. Bardos, E. S. Titi, “Euler equations for incompressible ideal fluids”, Russian Math. Surveys, 62:3 (2007), 409–451 | DOI | DOI | MR | Zbl

[4] C. Bardos, E. S. Titi, Mathematics and turbulence: where do we stand?, 2013, 40 pp., arXiv: 1301.0273

[5] C. Bardos, E. S. Titi, E. Wiedemann, “The vanishing viscosity as a selection principle for the Euler equations: the case of 3D shear flow”, C. R. Math. Acad. Sci. Paris, 350:15-16 (2012), 757–760 | DOI | MR | Zbl

[6] Y. Brenier, C. De Lellis, L. Székelyhidi, Jr., “Weak-strong uniqueness for measure-valued solutions”, Comm. Math. Phys., 305:2 (2011), 351–361 | DOI | MR | Zbl

[7] T. Buckmaster, C. De Lellis, L. Székelyhidi, Transporting microstructure and dissipative {E}uler flows, 2013, 35 pp., arXiv: 1302.2815

[8] E. Chiodaroli, C. De Lellis, O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, 2013, 30 pp., arXiv: 1304.0123

[9] C. M. Dafermos, Hyperbolic conservation laws in continuum physics, Grundlehren Math. Wiss., 325, 3rd ed., Springer-Verlag, Berlin, 2010, xxxvi+708 pp. | DOI | MR | Zbl

[10] S. Daneri, Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations, 2013, 33 pp., arXiv: 1302.0988

[11] C. De Lellis, L. Székelyhidi, Jr., “The Euler equations as a differential inclusion”, Ann. of Math. (2), 170:3 (2009), 1417–1436 | DOI | MR | Zbl

[12] C. De Lellis, L. Székelyhidi, Jr., “On admissibility criteria for weak solutions of the Euler equations”, Arch. Ration. Mech. Anal., 195:1 (2010), 225–260 | DOI | MR | Zbl

[13] C. De Lellis, L. Székelyhidi, Jr., “The $h$-principle and the equations of fluid dynamics”, Bull. Amer. Math. Soc. (N. S.), 49:3 (2012), 347–375 | DOI | MR | Zbl

[14] J. Duchon, R. Robert, “Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations”, Nonlinearity, 13:1 (2000), 249–255 | DOI | MR | Zbl

[15] L. C. Evans, Partial differential equations, Grad. Stud. Math., 19, 2nd ed., Amer. Math. Soc., Providence, RI, 2010, xxii+749 pp. | DOI | MR | Zbl

[16] G. L. Eyink, K. R. Sreenivasan, “Onsager and the theory of hydrodynamic turbulence”, Rev. Modern Phys., 78:1 (2006), 87–135 | DOI | MR | Zbl

[17] G. P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations, v. I, Springer Tracts Natur. Philos., 38, Linearized steady problems, Springer-Verlag, New York, 1994, xii+450 pp. | MR | Zbl

[18] G. P. Galdi, “An introduction to the {N}avier–{S}tokes initial-boundary value problem”, Fundamental directions in mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2000, 1–70 | MR | Zbl

[19] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Classics Math., reprint of the 1998 edition, Springer-Verlag, Berlin, 2001, xiv+517 pp. | MR | MR | Zbl | Zbl

[20] P. Isett, Hölder continuous {E}uler flows in three dimensions with compact support in time, 2012 (v4 – 2014), 176 pp., arXiv: 1211.4065

[21] T. Kato, “On classical solutions of the two-dimensional non-stationary Euler equation”, Arch. Ration. Mech. Anal., 25:3 (1967), 188–200 | DOI | MR | Zbl

[22] T. Kato, “Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary”, Seminar on nonlinear partial differential equations (Berkeley, CA, 1983), Math. Sci. Res. Inst. Publ., 2, Springer, New York, 1984, 85–98 | DOI | MR | Zbl

[23] P.-L. Lions, Mathematical topics in fluid mechanics, v. 1, Oxford Lecture Ser. Math. Appl., 3, Incompressible models, The Clarendon Press, Oxford Univ. Press, New York, 1996, xiv+237 pp. | MR | Zbl

[24] M. C. Lopes Filho, H. J. Nussenzveig Lopes, Yuxi Zheng, “Convergence of the vanishing viscosity approximation for superpositions of confined eddies”, Comm. Math. Phys., 201:2 (1999), 291–304 | DOI | MR | Zbl

[25] A. J. Majda, A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts Appl. Math., 27, Cambridge Univ. Press, Cambridge, 2002, xii+545 pp. | MR | Zbl

[26] L. Saint-Raymond, “Convergence of solutions to the Boltzmann equation in the incompressible Euler limit”, Arch. Ration. Mech. Anal., 166:1 (2003), 47–80 | DOI | MR | Zbl

[27] V. Scheffer, “An inviscid flow with compact support in space-time”, J. Geom. Anal., 3:4 (1993), 343–401 | DOI | MR | Zbl

[28] A. I. Shnirelman, “Lattice theory and flows of ideal incompressible fluid”, Russian J. Math. Phys., 1:1 (1993), 105–114 | MR | Zbl

[29] A. Shnirelman, “On the nonuniqueness of weak solution of the Euler equation”, Comm. Pure Appl. Math., 50:12 (1997), 1261–1286 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[30] A. Shnirelman, “Weak solutions with decreasing energy of incompressible Euler equations”, Comm. Math. Phys., 210:3 (2000), 541–603 | DOI | MR | Zbl

[31] L. Székelyhidi, Jr., “Weak solutions to the incompressible {E}uler equations with vortex sheet initial data”, C. R. Math. Acad. Sci. Paris, 349:19-20 (2011), 1063–1066 | DOI | MR | Zbl

[32] L. Székelyhidi, Jr., From isometric embeddings to turbulence, Lecture note No 41, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, 2012, 54 pp. http://www.mis.mpg.de/preprints/ln/lecturenote-4112.pdf

[33] L. Székelyhidi, Jr., E. Wiedemann, “Young measures generated by ideal incompressible fluid flows”, Arch. Ration. Mech. Anal., 206:1 (2012), 333–366 | DOI | MR | Zbl

[34] M. I. Vishik, “On general boundary problems for elliptic differential equations”, Eight papers on differential equations, Amer. Math. Soc. Transl. Ser. 2, 24, Amer. Math. Soc., Providence, RI, 1963, 107–172 | MR | Zbl

[35] E. Wiedemann, “Existence of weak solutions for the incompressible Euler equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28:5 (2011), 727–730 | DOI | MR | Zbl