Non-uniqueness for the Euler equations: the~effect of the boundary
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 189-207
Voir la notice de l'article provenant de la source Math-Net.Ru
Rotational initial data is considered for the two-dimensional incompressible Euler equations on an annulus. With use of the convex integration framework it is shown that there exist infinitely many admissible weak solutions (that is, with non-increasing energy) for such initial data. As a consequence, on bounded domains there exist admissible weak solutions which are not dissipative in the sense of Lions, as opposed to the case without physical boundaries. Moreover, it is shown that admissible solutions are dissipative if they are Hölder continuous near the boundary of the domain.
Bibliography: 34 titles.
Keywords:
non-uniqueness, wild solutions, boundary effects, convex integration, rotational flows.
Mots-clés : Euler equations, dissipative solutions, inviscid limit
Mots-clés : Euler equations, dissipative solutions, inviscid limit
@article{RM_2014_69_2_a0,
author = {C. Bardos and L. Sz\'ekelyhidi and Jr. and E. Wiedemann},
title = {Non-uniqueness for the {Euler} equations: the~effect of the boundary},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {189--207},
publisher = {mathdoc},
volume = {69},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_2_a0/}
}
TY - JOUR AU - C. Bardos AU - L. Székelyhidi AU - Jr. AU - E. Wiedemann TI - Non-uniqueness for the Euler equations: the~effect of the boundary JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 189 EP - 207 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2014_69_2_a0/ LA - en ID - RM_2014_69_2_a0 ER -
%0 Journal Article %A C. Bardos %A L. Székelyhidi %A Jr. %A E. Wiedemann %T Non-uniqueness for the Euler equations: the~effect of the boundary %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 189-207 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2014_69_2_a0/ %G en %F RM_2014_69_2_a0
C. Bardos; L. Székelyhidi; Jr.; E. Wiedemann. Non-uniqueness for the Euler equations: the~effect of the boundary. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 2, pp. 189-207. http://geodesic.mathdoc.fr/item/RM_2014_69_2_a0/