@article{RM_2014_69_1_a4,
author = {V. I. Buslaev and S. P. Suetin},
title = {Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {159--161},
year = {2014},
volume = {69},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_1_a4/}
}
TY - JOUR AU - V. I. Buslaev AU - S. P. Suetin TI - Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 159 EP - 161 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2014_69_1_a4/ LA - en ID - RM_2014_69_1_a4 ER -
%0 Journal Article %A V. I. Buslaev %A S. P. Suetin %T Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 159-161 %V 69 %N 1 %U http://geodesic.mathdoc.fr/item/RM_2014_69_1_a4/ %G en %F RM_2014_69_1_a4
V. I. Buslaev; S. P. Suetin. Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 1, pp. 159-161. http://geodesic.mathdoc.fr/item/RM_2014_69_1_a4/
[1] L. Baratchart, H. Stahl, M. Yattselev, Adv. Math., 229:1 (2012), 357–407 | DOI | MR | Zbl
[2] V. I. Buslaev, Matem. sb., 204:2 (2013), 39–72 | DOI | DOI | MR | Zbl
[3] V. I. Buslaev, “Ob analoge teoremy Shtalya dlya nabora mnogoznachnykh analiticheskikh funktsii”, Matem. sb., 205 (2014) (to appear)
[4] V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sbornik statei, Tr. MIAN, 279, MAIK, M., 2012, 31–58 | DOI | MR
[5] A. A. Gonchar, E. A. Rakhmanov, Matem. sb., 134(176):3(11) (1987), 306–352 | DOI | MR | Zbl
[6] A. A. Gonchar, “Ratsionalnye approksimatsii analiticheskikh funktsii”, Sovr. probl. matem., 1, MIAN, M., 2003, 83–106 | DOI | DOI | MR | Zbl
[7] H. Grötzsch, Ber. Verh. Sächs. Akad. Wiss. Leipzig, 82 (1930), 251–263 | Zbl
[8] M. Lavrentieff, C. R. Acad. Sci. Paris, 191 (1930), 827–829 | Zbl
[9] A. Martines-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, Matem. sb., 202:12 (2011), 113–136 | DOI | DOI | MR | Zbl
[10] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR
[11] E. A. Rakhmanov, S. P. Suetin, Matem. sb., 204:9 (2013), 115–160 | DOI | DOI
[12] H. Stahl, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl