Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 1, pp. 159-161
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2014_69_1_a4,
     author = {V. I. Buslaev and S. P. Suetin},
     title = {Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {159--161},
     year = {2014},
     volume = {69},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_1_a4/}
}
TY  - JOUR
AU  - V. I. Buslaev
AU  - S. P. Suetin
TI  - Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 159
EP  - 161
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_1_a4/
LA  - en
ID  - RM_2014_69_1_a4
ER  - 
%0 Journal Article
%A V. I. Buslaev
%A S. P. Suetin
%T Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 159-161
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2014_69_1_a4/
%G en
%F RM_2014_69_1_a4
V. I. Buslaev; S. P. Suetin. Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 1, pp. 159-161. http://geodesic.mathdoc.fr/item/RM_2014_69_1_a4/

[1] L. Baratchart, H. Stahl, M. Yattselev, Adv. Math., 229:1 (2012), 357–407 | DOI | MR | Zbl

[2] V. I. Buslaev, Matem. sb., 204:2 (2013), 39–72 | DOI | DOI | MR | Zbl

[3] V. I. Buslaev, “Ob analoge teoremy Shtalya dlya nabora mnogoznachnykh analiticheskikh funktsii”, Matem. sb., 205 (2014) (to appear)

[4] V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sbornik statei, Tr. MIAN, 279, MAIK, M., 2012, 31–58 | DOI | MR

[5] A. A. Gonchar, E. A. Rakhmanov, Matem. sb., 134(176):3(11) (1987), 306–352 | DOI | MR | Zbl

[6] A. A. Gonchar, “Ratsionalnye approksimatsii analiticheskikh funktsii”, Sovr. probl. matem., 1, MIAN, M., 2003, 83–106 | DOI | DOI | MR | Zbl

[7] H. Grötzsch, Ber. Verh. Sächs. Akad. Wiss. Leipzig, 82 (1930), 251–263 | Zbl

[8] M. Lavrentieff, C. R. Acad. Sci. Paris, 191 (1930), 827–829 | Zbl

[9] A. Martines-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, Matem. sb., 202:12 (2011), 113–136 | DOI | DOI | MR | Zbl

[10] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR

[11] E. A. Rakhmanov, S. P. Suetin, Matem. sb., 204:9 (2013), 115–160 | DOI | DOI

[12] H. Stahl, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl