de la Vallée-Poussin means of Fourier series for the quadratic spectrum and for spectra with power-like density
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 1, pp. 119-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new method is proposed and elaborated for investigating complex or real trigonometric series with various spectra. It is based on new multiplicative inequalities which give a lower bound for the integral norm of the de la Vallée-Poussin means and are themselves based on results establishing corresponding analogues of the Littlewood–Paley theorem in the BMO, Hardy, and Lorentz spaces. For spectra with power-like density a description of the class of absolute values of coefficients such that the corresponding complex or real trigonometric series are Fourier series is found which depends on the arithmetic characteristics of the spectrum and is sharp in limiting cases. Furthermore, for the quadratic spectrum some results of Hardy and Littlewood on elliptic theta functions are generalized and refined. For the quadratic spectrum and power-like spectra with non-integer exponents new lower bounds are found for the integral norms of exponential sums. Bibliography: 41 titles.
Keywords: Fourier series, BMO space, Hardy and Lorentz spaces, multiplicative inequalities, exponential sums, elliptic functions, theta series
Mots-clés : Vallée-Poussin means, spectra, Diophantine equations.
@article{RM_2014_69_1_a2,
     author = {S. V. Bochkarev},
     title = {de la {Vall\'ee-Poussin} means of {Fourier} series for the quadratic spectrum and for spectra with power-like density},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {119--152},
     year = {2014},
     volume = {69},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_1_a2/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - de la Vallée-Poussin means of Fourier series for the quadratic spectrum and for spectra with power-like density
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 119
EP  - 152
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_1_a2/
LA  - en
ID  - RM_2014_69_1_a2
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T de la Vallée-Poussin means of Fourier series for the quadratic spectrum and for spectra with power-like density
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 119-152
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2014_69_1_a2/
%G en
%F RM_2014_69_1_a2
S. V. Bochkarev. de la Vallée-Poussin means of Fourier series for the quadratic spectrum and for spectra with power-like density. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 1, pp. 119-152. http://geodesic.mathdoc.fr/item/RM_2014_69_1_a2/

[1] S. V. Bochkarev, “On a problem of Zygmund”, Math. USSR-Izv., 7:3 (1973), 629–637 | DOI | MR | Zbl

[2] S. V. Bochkarev, “Absolute convergence of Fourier series with respect to bounded systems”, Math. Notes, 15:3 (1974), 207–211 | DOI | MR | Zbl

[3] S. V. Bochkarev, “On the absolute convergence of Fourier series in bounded complete orthonormal systems of functions”, Math. USSR-Sb., 22:1 (1974), 201–216 | DOI | MR | Zbl

[4] S. V. Bochkarev, “A Fourier series in an arbitrary bounded orthonormal system that diverges on a set of positive measure”, Math. USSR-Sb., 27:3 (1975), 393–405 | DOI | MR | Zbl

[5] S. V. Bočkarev, “Logarithmic growth of the arithmetic means of the Lebesgue functions of bounded orthonormal systems”, Soviet Math. Dokl., 16:4 (1975), 799–802 | MR | Zbl

[6] S. V. Bochkarev, “A method of averaging in the theory of orthogonal series and some problems in the theory of bases”, Proc. Steklov Inst. Math., 146:3 (1980), 1–92 | MR | MR | Zbl

[7] S. V. Bochkarev, “Vallée-Poussin series in the spaces BMO, $L_1$, and $H^1(D)$, and multiplier inequalities”, Proc. Steklov Inst. Math., 210 (1995), 30–46 | MR | Zbl

[8] S. V. Bochkarev, “A method for estimating the $L_1$ norm of an exponential sum based on arithmetic properties of the spectrum”, Proc. Steklov Inst. Math., 232:1 (2001), 88–95 | MR | Zbl

[9] S. V. Bochkarev, “A new method for estimating the integral norm of exponential sums: application to quadratic sums”, Dokl. Math., 66:2 (2002), 210–212 | MR | Zbl

[10] S. V. Bochkarev, “Multiplicative inequalities for functions from the Hardy space $H^1$ and their application to the estimation of exponential sums”, Proc. Steklov Inst. Math., 243:4 (2003), 89–97 | MR | Zbl

[11] S. V. Bochkarev, “New multiplicative inequalities and estimates for the $L_1$-norm of trigonometric series and polynomials”, Dokl. Math., 72:2 (2005), 762–765 | MR | Zbl

[12] S. V. Bochkarev, “New inequalities in the Littlewood–Paley theory and estimates of the $L_1$ norm of trigonometric series and polynomials”, Proc. Steklov Inst. Math., 248 (2005), 59–68 | MR | Zbl

[13] S. V. Bochkarev, “Multiplicative inequalities for the $L_1$ norm: Applications in analysis and number theory”, Proc. Steklov Inst. Math., 255 (2006), 49–64 | DOI | MR

[14] S. V. Bochkarev, “De la Vallée-Poussin means of Fourier series for a quadratic spectrum and power density spectra”, Dokl. Math., 84:1 (2011), 485–490 | DOI | MR | Zbl

[15] S. V. Bochkarev, “Metod usrednenii v teorii ortogonalnykh ryadov”, Proceedings of the International Congress of Mathematicians, v.\;2 (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 599–604 | MR | Zbl

[16] G. Hardy, J. Littlewood, “Some problems of Diophantine approximation”, Proceedings of the 5th International Congress of Mathematicians, Cambridge, 1912, 223–229 | Zbl

[17] G. Hardy, J. Littlewood, “Some problems of Diophantine approximation. II. The trigonometrical series associated with the elliptic $\theta$-functions”, Acta Math., 37:1 (1914), 193–238 | DOI | MR | Zbl

[18] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp., vii+354 pp. | MR | MR | Zbl | Zbl

[19] G. Hardy, J. Littlewood, “Theorems concerning Cesàro means of power series”, Proc. London Math. Soc. (2), 36:1 (1934), 516–531 | DOI | MR | Zbl

[20] Ch. Fefferman, “Characterizations of bounded mean oscillation”, Bull. Amer. Math. Soc., 77:4 (1971), 587–588 | DOI | MR | Zbl

[21] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl

[22] S. V. Bochkarev, “Construction of basis in finite-dimensional spaces of analytic functions in the disk”, Soviet Math. Dokl., 25 (1982), 859–860 | Zbl

[23] S. V. Bochkarev, “Postroenie polinomialnykh bazisov v konechnomernykh prostranstvakh analiticheskikh v kruge funktsii”, Recent trends in mathematics (Reinhardsbrunn, October 11–13, 1982), Teubner-Texte Math., 50, BSB B. G Teubner Verlagsgesellschaft, Leipzig, 1982, 38–46 | MR | Zbl

[24] S. V. Bochkarev, “Construction of polynomial bases in finite-dimensional spaces of functions analytic in the disk”, Proc. Steklov Inst. Math., 164 (1985), 55–81 | MR | Zbl

[25] R. R. Coifman, G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl

[26] S. V. Konyagin, “On a problem of Littlewood”, Math. USSR-Izv., 18:2 (1982), 205–225 | DOI | MR | Zbl

[27] O. C. McGehee, L. Pigno, B. Smith, “Hardy's inequality and the $L^1$ norm of exponential sums”, Ann. of Math. (2), 113:3 (1981), 613–618 | DOI | MR | Zbl

[28] R. E. Edwards, Fourier series. A modern introduction, v. 2, Grad. Texts in Math., 85, 2nd ed., Springer-Verlag, New York–Berlin, 1982, xi+369 pp. | DOI | MR | MR | Zbl | Zbl

[29] C. Hooley, “On the representations of a number as the sum of two cubes”, Math. Z., 82:3 (1963), 259–266 | DOI | MR | Zbl

[30] C. Hooley, “On the representation of a number as the sum of two $h$-th powers”, Math. Z., 84:2 (1964), 126–136 | DOI | MR | Zbl

[31] C. Hooley, “On another sieve method and the numbers that are a sum of two $h$-th powers”, Proc. Lond. Math. Soc. (3), 43:1 (1981), 73–109 | DOI | MR | Zbl

[32] C. Hooley, “Some recent advances in analytical number theory”, Proceedings of the International Congress of Mathematicians (Warsaw, 1983), v. 1, PWN, Warsaw, 1984, 85–97 | MR | Zbl

[33] S. Ramanujan, “Some formulae in the analytic theory of numbers”, Messenger Math., 45 (1916), 81–84 | MR | Zbl

[34] S. Ramanujan, Collected papers, 2nd ed., Chelsea, New York, 1962 | MR | Zbl

[35] B. M. Wilson, “Proofs of some formulae enunciated by Ramanujan”, Proc. Lond. Math. Soc. (2), 21:1 (1923), 235–255 | DOI | MR | Zbl

[36] M. Z. Garaev, “Upper bounds for the number of solutions of a Diophantine equation”, Trans. Amer. Math. Soc., 357:6 (2005), 2527–2534 | DOI | MR | Zbl

[37] S. V. Konyagin, “Ob otsenke $L_1$-normy odnoi eksponentsialnoi summy”, Teoriya priblizhenii funktsii i operatorov, Tez. dokl. mezhdunarod. konf., Ekaterinburg, 2000, 88–89

[38] A. N. Kolmogoroff, “Une série de Fourier–Lebesgue divergente presque partout”, Fund. Math., 4 (1923), 324–328 | MR | Zbl | Zbl

[39] S. V. Bochkarev, “Hausdorff–Young–Riesz theorem in Lorentz spaces and multiplicative inequalities”, Proc. Steklov Inst. Math., 219:4 (1997), 96–107 | MR | Zbl

[40] E. F. Beckenbach, R. Bellman, Inequalities, Ergeb. Math. Grenzgeb. (N. F.), 30, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1961, xii+198 pp. | MR | MR | Zbl | Zbl

[41] R. Salem, “Sur les transformations des séries de Fourier”, Fund. Math., 33 (1945), 108–114 | MR | Zbl