Mots-clés : Vallée-Poussin means, spectra, Diophantine equations.
@article{RM_2014_69_1_a2,
author = {S. V. Bochkarev},
title = {de la {Vall\'ee-Poussin} means of {Fourier} series for the quadratic spectrum and for spectra with power-like density},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {119--152},
year = {2014},
volume = {69},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_1_a2/}
}
TY - JOUR AU - S. V. Bochkarev TI - de la Vallée-Poussin means of Fourier series for the quadratic spectrum and for spectra with power-like density JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 119 EP - 152 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2014_69_1_a2/ LA - en ID - RM_2014_69_1_a2 ER -
%0 Journal Article %A S. V. Bochkarev %T de la Vallée-Poussin means of Fourier series for the quadratic spectrum and for spectra with power-like density %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 119-152 %V 69 %N 1 %U http://geodesic.mathdoc.fr/item/RM_2014_69_1_a2/ %G en %F RM_2014_69_1_a2
S. V. Bochkarev. de la Vallée-Poussin means of Fourier series for the quadratic spectrum and for spectra with power-like density. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 1, pp. 119-152. http://geodesic.mathdoc.fr/item/RM_2014_69_1_a2/
[1] S. V. Bochkarev, “On a problem of Zygmund”, Math. USSR-Izv., 7:3 (1973), 629–637 | DOI | MR | Zbl
[2] S. V. Bochkarev, “Absolute convergence of Fourier series with respect to bounded systems”, Math. Notes, 15:3 (1974), 207–211 | DOI | MR | Zbl
[3] S. V. Bochkarev, “On the absolute convergence of Fourier series in bounded complete orthonormal systems of functions”, Math. USSR-Sb., 22:1 (1974), 201–216 | DOI | MR | Zbl
[4] S. V. Bochkarev, “A Fourier series in an arbitrary bounded orthonormal system that diverges on a set of positive measure”, Math. USSR-Sb., 27:3 (1975), 393–405 | DOI | MR | Zbl
[5] S. V. Bočkarev, “Logarithmic growth of the arithmetic means of the Lebesgue functions of bounded orthonormal systems”, Soviet Math. Dokl., 16:4 (1975), 799–802 | MR | Zbl
[6] S. V. Bochkarev, “A method of averaging in the theory of orthogonal series and some problems in the theory of bases”, Proc. Steklov Inst. Math., 146:3 (1980), 1–92 | MR | MR | Zbl
[7] S. V. Bochkarev, “Vallée-Poussin series in the spaces BMO, $L_1$, and $H^1(D)$, and multiplier inequalities”, Proc. Steklov Inst. Math., 210 (1995), 30–46 | MR | Zbl
[8] S. V. Bochkarev, “A method for estimating the $L_1$ norm of an exponential sum based on arithmetic properties of the spectrum”, Proc. Steklov Inst. Math., 232:1 (2001), 88–95 | MR | Zbl
[9] S. V. Bochkarev, “A new method for estimating the integral norm of exponential sums: application to quadratic sums”, Dokl. Math., 66:2 (2002), 210–212 | MR | Zbl
[10] S. V. Bochkarev, “Multiplicative inequalities for functions from the Hardy space $H^1$ and their application to the estimation of exponential sums”, Proc. Steklov Inst. Math., 243:4 (2003), 89–97 | MR | Zbl
[11] S. V. Bochkarev, “New multiplicative inequalities and estimates for the $L_1$-norm of trigonometric series and polynomials”, Dokl. Math., 72:2 (2005), 762–765 | MR | Zbl
[12] S. V. Bochkarev, “New inequalities in the Littlewood–Paley theory and estimates of the $L_1$ norm of trigonometric series and polynomials”, Proc. Steklov Inst. Math., 248 (2005), 59–68 | MR | Zbl
[13] S. V. Bochkarev, “Multiplicative inequalities for the $L_1$ norm: Applications in analysis and number theory”, Proc. Steklov Inst. Math., 255 (2006), 49–64 | DOI | MR
[14] S. V. Bochkarev, “De la Vallée-Poussin means of Fourier series for a quadratic spectrum and power density spectra”, Dokl. Math., 84:1 (2011), 485–490 | DOI | MR | Zbl
[15] S. V. Bochkarev, “Metod usrednenii v teorii ortogonalnykh ryadov”, Proceedings of the International Congress of Mathematicians, v.\;2 (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 599–604 | MR | Zbl
[16] G. Hardy, J. Littlewood, “Some problems of Diophantine approximation”, Proceedings of the 5th International Congress of Mathematicians, Cambridge, 1912, 223–229 | Zbl
[17] G. Hardy, J. Littlewood, “Some problems of Diophantine approximation. II. The trigonometrical series associated with the elliptic $\theta$-functions”, Acta Math., 37:1 (1914), 193–238 | DOI | MR | Zbl
[18] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp., vii+354 pp. | MR | MR | Zbl | Zbl
[19] G. Hardy, J. Littlewood, “Theorems concerning Cesàro means of power series”, Proc. London Math. Soc. (2), 36:1 (1934), 516–531 | DOI | MR | Zbl
[20] Ch. Fefferman, “Characterizations of bounded mean oscillation”, Bull. Amer. Math. Soc., 77:4 (1971), 587–588 | DOI | MR | Zbl
[21] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl
[22] S. V. Bochkarev, “Construction of basis in finite-dimensional spaces of analytic functions in the disk”, Soviet Math. Dokl., 25 (1982), 859–860 | Zbl
[23] S. V. Bochkarev, “Postroenie polinomialnykh bazisov v konechnomernykh prostranstvakh analiticheskikh v kruge funktsii”, Recent trends in mathematics (Reinhardsbrunn, October 11–13, 1982), Teubner-Texte Math., 50, BSB B. G Teubner Verlagsgesellschaft, Leipzig, 1982, 38–46 | MR | Zbl
[24] S. V. Bochkarev, “Construction of polynomial bases in finite-dimensional spaces of functions analytic in the disk”, Proc. Steklov Inst. Math., 164 (1985), 55–81 | MR | Zbl
[25] R. R. Coifman, G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl
[26] S. V. Konyagin, “On a problem of Littlewood”, Math. USSR-Izv., 18:2 (1982), 205–225 | DOI | MR | Zbl
[27] O. C. McGehee, L. Pigno, B. Smith, “Hardy's inequality and the $L^1$ norm of exponential sums”, Ann. of Math. (2), 113:3 (1981), 613–618 | DOI | MR | Zbl
[28] R. E. Edwards, Fourier series. A modern introduction, v. 2, Grad. Texts in Math., 85, 2nd ed., Springer-Verlag, New York–Berlin, 1982, xi+369 pp. | DOI | MR | MR | Zbl | Zbl
[29] C. Hooley, “On the representations of a number as the sum of two cubes”, Math. Z., 82:3 (1963), 259–266 | DOI | MR | Zbl
[30] C. Hooley, “On the representation of a number as the sum of two $h$-th powers”, Math. Z., 84:2 (1964), 126–136 | DOI | MR | Zbl
[31] C. Hooley, “On another sieve method and the numbers that are a sum of two $h$-th powers”, Proc. Lond. Math. Soc. (3), 43:1 (1981), 73–109 | DOI | MR | Zbl
[32] C. Hooley, “Some recent advances in analytical number theory”, Proceedings of the International Congress of Mathematicians (Warsaw, 1983), v. 1, PWN, Warsaw, 1984, 85–97 | MR | Zbl
[33] S. Ramanujan, “Some formulae in the analytic theory of numbers”, Messenger Math., 45 (1916), 81–84 | MR | Zbl
[34] S. Ramanujan, Collected papers, 2nd ed., Chelsea, New York, 1962 | MR | Zbl
[35] B. M. Wilson, “Proofs of some formulae enunciated by Ramanujan”, Proc. Lond. Math. Soc. (2), 21:1 (1923), 235–255 | DOI | MR | Zbl
[36] M. Z. Garaev, “Upper bounds for the number of solutions of a Diophantine equation”, Trans. Amer. Math. Soc., 357:6 (2005), 2527–2534 | DOI | MR | Zbl
[37] S. V. Konyagin, “Ob otsenke $L_1$-normy odnoi eksponentsialnoi summy”, Teoriya priblizhenii funktsii i operatorov, Tez. dokl. mezhdunarod. konf., Ekaterinburg, 2000, 88–89
[38] A. N. Kolmogoroff, “Une série de Fourier–Lebesgue divergente presque partout”, Fund. Math., 4 (1923), 324–328 | MR | Zbl | Zbl
[39] S. V. Bochkarev, “Hausdorff–Young–Riesz theorem in Lorentz spaces and multiplicative inequalities”, Proc. Steklov Inst. Math., 219:4 (1997), 96–107 | MR | Zbl
[40] E. F. Beckenbach, R. Bellman, Inequalities, Ergeb. Math. Grenzgeb. (N. F.), 30, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1961, xii+198 pp. | MR | MR | Zbl | Zbl
[41] R. Salem, “Sur les transformations des séries de Fourier”, Fund. Math., 33 (1945), 108–114 | MR | Zbl