Mots-clés : Painlevé equations
@article{RM_2014_69_1_a1,
author = {A. M. Levin and M. A. Olshanetsky and A. V. Zotov},
title = {Classification of isomonodromy problems on elliptic curves},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {35--118},
year = {2014},
volume = {69},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_1_a1/}
}
TY - JOUR AU - A. M. Levin AU - M. A. Olshanetsky AU - A. V. Zotov TI - Classification of isomonodromy problems on elliptic curves JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 35 EP - 118 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2014_69_1_a1/ LA - en ID - RM_2014_69_1_a1 ER -
A. M. Levin; M. A. Olshanetsky; A. V. Zotov. Classification of isomonodromy problems on elliptic curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 1, pp. 35-118. http://geodesic.mathdoc.fr/item/RM_2014_69_1_a1/
[1] P. Painlevé, “Mémoire sur les équations différentielles dont l'intégrale générale est uniforme”, Bull. Soc. Math. France, 28 (1900), 201–261 | MR | Zbl
[2] P. Painlevé, “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25:1 (1902), 1–85 | DOI | MR | Zbl
[3] B. Gambier, “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critique fixes”, Acta Math., 33:1 (1910), 1–55 | DOI | MR | Zbl
[4] R. Fuchs, “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen”, Math. Ann., 63:3 (1907), 301–321 | DOI | MR | Zbl
[5] R. Garnier, “Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critique fixés”, Ann. Sci. École Norm. Sup. (3), 29 (1912), 1–126 | MR | Zbl
[6] L. Schlesinger, “Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten”, J. Reine Angew. Math., 141 (1912), 96–145 | DOI | Zbl
[7] H. Flaschka, A. C. Newell, “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys., 76:1 (1980), 65–116 | DOI | MR | Zbl
[8] H. Flaschka, A. C. Newell, “Multiphase similarity solutions of integrable evolution equations”, Phys. D, 3:1-2 (1981), 203–221 | DOI | Zbl
[9] M. Jimbo, T. Miwa, K. Ueno, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and $\tau$-function”, Phys. D, 2:2 (1981), 306–352 | DOI | MR | Zbl
[10] M. Jimbo, T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2:3 (1981), 407–448 | DOI | MR | Zbl
[11] M. Jimbo, T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III”, Phys. D, 4:1 (1981), 26–46 | DOI | MR | Zbl
[12] E. L. Ince, Ordinary differential equations, Dover Publications, New York, 1956, viii+558 pp. | MR | Zbl
[13] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé. A modern theory of special functions, Aspects Math., E16, Friedr. Vieweg Sohn, Braunschweig, 1991, xii+347 pp. | DOI | MR | Zbl
[14] The Painlevé property. One century later, CRM Ser. Math. Phys., ed. R. Conte, Springer-Verlag, New York, 1999, xxvi+810 pp. | DOI | MR | Zbl
[15] A. R. Its, V. Yu. Novokshenov, The isomonodromic deformation method in the theory of Painlevé equations, Lecture Notes in Math., 1191, Springer-Verlag, Berlin, 1986, iv+313 pp. | DOI | MR | Zbl
[16] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé transcendents. The Riemann–Hilbert approach, Math. Surveys Monogr., 128, Amer. Math. Soc., Providence, RI, 2006, xii+553 pp. | DOI | MR | Zbl
[17] Painlevé transcedents. Their asymptotics and physical applications, Proceedings of the NATO Advanced Research Workshop (Sainte-Adèle, Canada, 1990), NATO Adv. Sci. Inst. Ser. B: Phys., 278, eds. D. Levi, P. Winternitz, Springer-Verlag, New York, NY, 1992, xxvi+446 pp. | DOI | Zbl
[18] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl
[19] A. A. Bolibrukh, Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000, 127 pp.
[20] A. A. Bolibruch, “On isomonodromic deformations of Fuchsian systems”, J. Dynam. Control Syst., 3:4 (1997), 589–604 | DOI | MR | Zbl
[21] S. Yu. Slavyanov, W. Lay, Special functions. A unified theory based on singularities, with a foreword by A. Seeger, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2000, xvi+293 pp. | MR | Zbl
[22] I. Krichever, “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Mosc. Math. J., 2:4 (2002), 717–752 | MR | Zbl
[23] P. Boalch, “From Klein to Painlevé via Fourier, Laplace and Jimbo”, Proc. London Math. Soc. (3), 90:1 (2005), 167–208 | DOI | MR | Zbl
[24] R. R. Gontsov, V. A. Poberezhnyi, G. F. Khel'minck, “On deformations of linear differential systems”, Russian Math. Surveys, 66:1 (2011), 63–105 | DOI | DOI | MR | Zbl
[25] K. Okamoto, “On Fuchs' problem on a torus”, Japan–United States seminar on ordinary differential and functional equations (Kyoto, 1971), Lecture Notes in Math., 243, Springer, Berlin, 1971, 277–280 | DOI | MR | Zbl
[26] K. Iwasaki, “Moduli and deformation for Fuchsian projective connections on a Riemann surface”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38:3 (1991), 431–531 | MR | Zbl
[27] S. Kawai, Deformation of complex structures on a torus and monodromy preserving deformation, preprint, University of Tokyo, 1995
[28] A. M. Levin, M. A. Olshanetsky, Classical limit of the Knizhnik–Zamolodchikov–Bernard equations as hierarchy of isomonodromic deformations. Free fields approach, 1997 (v3 – 1998), 40 pp., arXiv: hep-th/9709207
[29] M. A. Olshanetsky, “Generalized Hitchin systems and the Knizhnik–Zamolodchikov–Bernard equation on ellipic curves”, Lett. Math. Phys., 42:1 (1997), 59–71 ; (1995), 11 pp., arXiv: hep-th/9510143 | DOI | MR | Zbl
[30] A. Levin, M. Olshanetsky, “Hierarchies of isomonodromic deformations and Hitchin systems”, Moscow seminar in mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 191, Amer. Math. Soc., Providence, RI, 1999, 223–262 | MR | Zbl
[31] N. Hitchin, “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl
[32] N. Nekrasov, “Holomorphic bundles and many-body systems”, Comm. Math. Phys., 180:3 (1996), 587–603 ; (1995), 21 pp., arXiv: hep-th/9503157 | DOI | MR | Zbl
[33] A. Gorsky, N. Nekrasov, Elliptic Calogero–Moser system from two dimensional current algebra, 1994, 8 pp., arXiv: hep-th/9401021
[34] B. Enriquez, V. Rubtsov, “Hitchin systems, higher Gaudin operators and $r$-matrices”, Math. Res. Lett., 3:3 (1996), 343–357 | DOI | MR | Zbl
[35] A. Levin, M. Olshanetsky, “Double coset construction of moduli space of holomorphic bundles and Hitchin systems”, Commun. Math. Phys., 188:2 (1997), 449–466 ; (1996), 19 pp., arXiv: alg-geom/9605005 | DOI | MR | Zbl
[36] D. Korotkin, H. Samtleben, “On the quantization of isomonodromic deformations on the torus”, Internat. J. Modern Phys. A, 12:11 (1997), 2013–2029 | DOI | MR | Zbl
[37] G. Kuroki, T. Takebe, “Twisted Wess–Zumino–Witten models on elliptic curves”, Comm. Math. Phys., 190:1 (1997), 1–56 ; (1996 (v4 – 1997)), 55 pp., arXiv: q-alg/9612033 | DOI | MR | Zbl
[38] K. Takasaki, “Gaudin model, KZ equation, and isomonodromic problem on torus”, Lett. Math. Phys., 44:2 (1998), 143–156 ; (1997), 15 pp., arXiv: hep-th/9711058 | DOI | MR | Zbl
[39] J. Harnad, M. A. Wisse, “Loop algebra moment maps and Hamiltonian models for the Painlevé transcendants”, Mechanics day (Waterloo, ON, 1992), Fields Inst. Commun., 7, Amer. Math. Soc., Providence, RI, 1996, 155–169 ; 1993, 14 pp., arXiv: hep-th/9305027 | MR | Zbl
[40] A. G. Reiman, M. A. Semenov-Tian-Schanskii, “Lie algebras and Lax equations with spectral parameter on elliptic curve”, J. Soviet Math., 46:1 (1989), 1631–1640 | DOI | MR | Zbl
[41] I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles”, Funct. Anal. Appl., 14:4 (1980), 282–290 | DOI | MR | Zbl
[42] Yu. Chernyakov, A. M. Levin, M. Olshanetsky, A. Zotov, “Elliptic Schlesinger system and Painlevé VI”, J. Phys. A, 39:39 (2006), 12083–12101 | DOI | MR | Zbl
[43] M. A. Olshanetsky, A. V. Zotov, “Isomonodromic problems on elliptic curve, rigid tops and reflection equations”, Elliptic integrable systems, Rokko Lectures in Math., 18, Kobe Univ., Kobe, Japan, 2005, 149–171
[44] A. M. Levin, M. A. Olshanetsky, “Painlevé–Calogero correspondence”, Calogero–Moser–Sutherland models (Montréal, QC, 1997), CRM Ser. Math. Phys., Springer, New York, 2000, 313–332 ; 1997, 17 pp., arXiv: alg-geom/9706010 | MR
[45] A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Characteristic classes and Hitchin systems. General construction”, Comm. Math. Phys., 316:1 (2012), 1–44 ; Characteristic classes and integrable systems. General construction, 2010, 52 pp., arXiv: 1006.0702 | DOI | MR | Zbl
[46] A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Calogero–Moser systems for simple Lie groups and characteristic classes of bundles”, J. Geom. Phys., 62:8 (2012), 1810–1850 ; Characteristic classes and integrable systems for simple Lie groups, 2010, 51 pp., arXiv: 1007.4127 | DOI | MR | Zbl
[47] A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, Theoret. and Math. Phys., 177:1 (2013), 1281–1338 | DOI | DOI
[48] A. M. Levin, M. A. Olshanetsky, A. V. Smirnov, A. V. Zotov, “Hecke transformations of conformal blocks in WZW theory. I. KZB equations for non-trivial bundles”, SIGMA, 8 (2012), 095, 37 pp. | DOI | MR | Zbl
[49] A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Monopoles and modifications of bundles over elliptic curves”, SIGMA, 5 (2009), 022, 12 pp. ; (2008 (v2 – 2009)), 22 pp., arXiv: 0811.3056 | DOI | MR | Zbl
[50] M. F. Atiyah, “Vector bundles over an elliptic curve”, Proc. London Math. Soc. (3), 7 (1957), 414–452 | DOI | MR | Zbl
[51] A. V. Levin, A. M. Zotov, “Integrable model of interacting elliptic tops”, Theoret. and Math. Phys., 146:1 (2006), 45–52 | DOI | DOI | MR | Zbl
[52] A. M. Levin, M. A. Olshanetsky, A. V. Smirnov, A. V. Zotov, “Characteristic classes of $\mathrm{SL}(N,\mathbb C)$-bundles and quantum dynamical elliptic $\mathrm R$-matrices”, J. Phys. A, 46:3 (2013), 035201, 25 pp. ; (2012), 27 pp., arXiv: 1208.5750 | DOI | MR | Zbl
[53] E. Franco, O. Garcia-Prada, P. E. Newstead, Higgs bundles over elliptic curves, 2013, 41 pp., arXiv: 1302.2881
[54] N. Hitchin, Higgs bundles and characteristic classes, 2013, 18 pp., arXiv: 1308.4603
[55] D. Baraglia, L. P. Schaposnik, Real structures on moduli spaces of Higgs bundles, 2013, 19 pp., arXiv: 1309.1195
[56] M. F. Atiyah, R. Bott, “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308:1505 (1983), 523–615 | DOI | MR | Zbl
[57] V. G. Drinfeld, C. Simpson, “$B$-structures on $G$-bundles and local triviality”, Math. Res. Lett., 2:6 (1995), 823–829 | DOI | MR | Zbl
[58] A. Beauville, Y. Laszlo, “Un lemme de descente”, C. R. Acad. Sci. Paris Sér. I Math., 320:3 (1995), 335–340 | MR | Zbl
[59] D. Arinkin, S. Lysenko, “Isomorphisms between moduli spaces of $SL(2)$-bundles with connections on ${\mathbb P}^1\setminus\{x_1,\dots,x_4\}$”, Math. Res. Lett., 4:2 (1997), 181–190 | DOI | MR | Zbl
[60] D. Arinkin, S. Lysenko, “On the moduli spaces of SL(2)-bundles with connections on ${\mathbf P}^1\setminus\{x_1,\dots,x_4\}$”, Int. Math. Res. Not., 1997:19 (1997), 983–999 | DOI | MR | Zbl
[61] A. M. Levin, M. A. Olshanetsky, A. Zotov, “Hitchin systems–symplectic Hecke correspondence and two-dimensional version”, Comm. Math. Phys., 236:1 (2003), 93–133 ; (2001 (v3 – 2002)), 39 pp., arXiv: nlin/0110045 | DOI | MR | Zbl
[62] P. Painlevé, “Sur les équations différentielles du second ordre à points critiques fixes”, C. R. Acad. Sci. (Paris), 143 (1906), 1111–1117 | Zbl
[63] Yu. I. Manin, “Sixth Painlevé equation, universal elliptic curve, and mirror of ${\mathbf{P}} ^2$”, Geometry of differential equations, Amer. Math. Soc. Transl. Ser. 2, 186, Amer. Math. Soc., Providence, RI, 1998, 131–151 | MR | Zbl
[64] A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Painlevé VI, rigid tops and reflection equation”, Comm. Math. Phys., 268:1 (2006), 67–103 ; (2005 (v2 – 2006)), 32 pp., arXiv: math/0508058 | DOI | MR | Zbl
[65] A. Zotov, “Elliptic linear problem for Calogero–Inozemtsev model and Painlevé VI equation”, Lett. Math. Phys., 67:2 (2004), 153–165 ; (2003), 13 pp., arXiv: hep-th/0310260 | DOI | MR | Zbl
[66] P. Boutroux, “Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre”, Ann. Sci. École Norm. Super. (3), 30 (1913), 255–375 ; suite, 31 (1914), 99–159 | MR | Zbl | MR | Zbl
[67] R. Garnier, “Étude de l'intégrale générale de l'équation VI de M. Painlevé dans le voisinage de ses singularités transcendantes”, Ann. Sci. École Norm. Sup. (3), 34 (1917), 239–353 | MR | Zbl
[68] I. M. Krichever, “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Mosc. Math. J., 2:4 (2002), 717–752 ; (2001), 38 pp., arXiv: hep-th/0112096 | MR | Zbl
[69] C. T. Simpson, “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc., 3:3 (1990), 713–770 | DOI | MR | Zbl
[70] A. Pressley, G. Segal, Loop groups, Oxford Math. Monogr., Oxford Univ. Press, New York, 1986, viii+318 pp. | MR | MR | Zbl | Zbl
[71] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990, 400 pp. | DOI | MR | MR | Zbl | Zbl
[72] D. Arinkin, Moduli of connections with a small parameter on a curve, 2004, 19 pp., arXiv: math/0409373
[73] V. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | DOI | MR | MR | Zbl | Zbl
[74] I. M. Krichever, “Method of averaging for two-dimensional “integrable” equations”, Funct. Anal. Appl., 22:3 (1988), 200–213 | DOI | MR | Zbl
[75] K. Okamoto, “On the $\tau$-function of the Painlevé equations”, Phys. D, 2:3 (1981), 525–535 | DOI | MR | Zbl
[76] K. Takasaki, “Spectral curves and Whitham equations in isomonodromic problems of Schlesinger type”, Asian J. Math., 2:4 (1998), 1049–1078 ; (1997), 41 pp., arXiv: solv-int/9704004 | DOI | MR | Zbl
[77] E. Looijenga, “Root systems and elliptic curves”, Invent. Math., 38:1 (1976/77), 17–32 | DOI | MR | Zbl
[78] I. N. Bernstein, O. V. Schwarzman, “Chevalley's theorem for complex crystallographic Coxeter groups”, Funct. Anal. Appl., 12:4 (1978), 308–310 | DOI | MR | Zbl
[79] J. Bernstein, O. Schwarzman, “Complex crystallographic Coxeter groups and affine root systems”, J. Nonlinear Math. Phys., 13:2 (2006), 163–182 | DOI | MR | Zbl
[80] C. Schweigert, “On moduli spaces of flat connections with non-simply connected structure group”, Nuclear Phys. B, 492:3 (1997), 743–755 | DOI | MR | Zbl
[81] R. Friedman, J. W. Morgan, Holomorphic principal bundles over elliptic curves, 1998, 68 pp., arXiv: math/9811130
[82] M. S. Narasimhan, C. S. Seshadri, “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math. (2), 82:3 (1965), 540–567 | DOI | MR | Zbl
[83] N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6, transl. from the 1968 French original by A. Pressley, Elem. Math. (Berlin), Springer-Verlag, Berlin, 2002, xii+300 pp. | MR | MR | Zbl | Zbl
[84] P. A. M. Dirac, Lectures on quantum mechanics, Belfer Grad. Sch. Sci. Monogr. Ser., 2, Academic Press, Inc., New York, 1967, v+87 pp. | MR | MR
[85] H. W. Braden, V. A. Dolgushev, M. A. Olshanetsky, A. V. Zotov, “Classical $r$-matrices and the Feigin–Odesskii algebra via Hamiltonian and Poisson reductions”, J. Phys. A, 36:5 (2003), 6979–7000 | DOI | MR | Zbl
[86] P. Etingof, A. Varchenko, “Geometry and classification of solutions of the classical dynamical Yang–Baxter equation”, Comm. Math. Phys., 192:1 (1998), 77–120 | DOI | MR | Zbl
[87] O. Schiffmann, “On classification of dynamical r-matrices”, Math. Res. Lett., 5:1-2 (1998), 13–30 | DOI | MR | Zbl
[88] P. Etingof, O. Schiffmann, “Twisted traces of intertwiners for Kac–Moody algebras and classical dynamical r-matrices corresponding to generalized Belavin–Drinfeld triples”, Math. Res. Lett., 6:5-6 (1999), 593–612 | DOI | MR | Zbl
[89] L. Fehér, B. G. Pusztai, “Generalizations of Felder's elliptic dynamical $r$-matrices associated with twisted loop algebras of self-dual Lie algebras”, Nuclear Phys. B, 621:3 (2002), 622–642 ; (2001), 22 pp., arXiv: math/0109132 | DOI | MR | Zbl
[90] O. Babelon, C.-M. Viallet, “Hamiltonian structures and Lax equations”, Phys. Lett. B, 237:3-4 (1990), 411–416 | DOI | MR
[91] E. Billey, J. Avan, O. Babelon, “The r-matrix structure of the Euler–Calogero–Moser model”, Phys. Lett. A, 186:1-2 (1994), 114–118 | DOI | MR | Zbl
[92] K. Takasaki, “Painlevé–Calogero correspondence revisited”, J. Math. Phys., 42:3 (2001), 1443–1473 | DOI | MR | Zbl
[93] B. I. Suleimanov, “The Hamilton property of Painlevé equations and the method of isomonodromic deformations”, Differential Equations, 30:5 (1994), 726–732 | MR | Zbl
[94] A. Zabrodin, A. Zotov, “Quantum Painlevé–Calogero correspondence”, J. Math. Phys., 53:7 (2012), 073507, 19 pp. ; (2011), 55 pp., arXiv: 1107.5672 | DOI | MR | Zbl
[95] A. Zabrodin, A. Zotov, “Quantum Painlevé–Calogero correspondence for Painlevé VI”, J. Math. Phys., 53:7 (2012), 073508, 19 pp. | DOI | MR | Zbl
[96] A. Zabrodin, A. Zotov, Classical-quantum correspondence and functional relations for Painlevé equations, 2012, 38 pp., arXiv: 1212.5813
[97] G. Aminov, S. Arthamonov, A. Smirnov, A. Zotov, Modifications of bundles as generating functions of Lax operators, Preprint ITEP-TH-27/13, 2013
[98] G. Felder, C. Wieczerkowski, “Conformal blocks on elliptic curves and the Knizhnik–Zamolodchikov–Bernard equations”, Comm. Math. Phys., 176:1 (1996), 133–161 ; (1994), 32 pp., arXiv: hep-th/9411004 | DOI | MR | Zbl
[99] N. J. Hitchin, “Flat connections and geometric quantization”, Comm. Math. Phys., 131:2 (1990), 347–380 | DOI | MR | Zbl
[100] G. Felder, “The KZB equations on Riemann surfaces”, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 687–725 ; 1996, 29 pp., arXiv: hep-th/9609153 | MR | Zbl
[101] D. A. Ivanov, “Knizhnik–Zamolodchikov–Bernard equations on Riemann surfaces”, Internat. J. Modern Phys. A, 10:17 (1995), 2507–2536 ; (1994), 23 pp., arXiv: hep-th/9410091 | DOI | MR | Zbl
[102] N. Reshetikhin, “The Knizhnik–Zamolodchikov system as a deformation of the isomonodromy problem”, Lett. Math. Phys., 26:3 (1992), 167–177 | DOI | MR | Zbl
[103] J. Harnard, “Quantum isomonodromic deformations and the Knizhnik–Zamolodchikov equations”, Symmetries and integrability of difference equations (Estérel, PQ, 1994), CRM Proc. Lecture Notes, 9, Amer. Math. Soc., Providence, RI, 1996, 155–161 ; 1994, 9 pp., arXiv: hep-th/9406078 | MR | Zbl
[104] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 3, Addison-Wesley Series in Advanced Physics, Quantum mechanics: non-relativistic theory, Pergamon Press Ltd., London–Paris; Addison-Wesley Publishing Co., Inc., Reading, MA, 1958, xii+515 pp. | MR | MR | Zbl
[105] A. V. Zotov, “1+1 Gaudin model”, SIGMA, 7 (2011), 067, 26 pp. ; (2010 (v2 – 2011)), 26 pp., arXiv: 1012.1072 | DOI | MR | Zbl
[106] A. V. Zotov, “Classical integrable systems and their field-theoretical generalizations”, Phys. Particles Nuclei, 37:3 (2006), 400–443 | DOI
[107] G. Aminov, S. Arthamonov, A. Levin, M. Olshanetsky, A. Zotov, Painlevé field theory, 2013, 67 pp., arXiv: 1306.3265
[108] V. I. Arnold, B. A. Khesin, Topological methods in hydrodynamics, Appl. Math. Sci., 125, Springer-Verlag, New York, 1998, xvi+374 pp. | MR | Zbl
[109] V. I. Arnold, “Gamiltonovost uravnenii Eilera dinamiki tverdogo tela i idealnoi zhidkosti”, UMN, 24:3(147) (1969), 225–226 | MR | Zbl
[110] B. Khesin, A. Levin, M. Olshanetsky, “Bihamiltonian structures and quadratic algebras in hydrodynamics and on non-commutative torus”, Comm. Math. Phys., 250:3 (2004), 581–612 | DOI | MR | Zbl
[111] N. E. Zhukovskii, “O dvizhenii tverdogo tela, imeyuschego polosti, napolnennye odnorodnoi kapelnoi zhidkostyu. I, II, III”, Zhurnal Russkogo fiziko-khimicheskogo obschestva, 17 (1885), 81–113, 145–199, 231–280
[112] V. Volterra, “Sur la théorie des variations des latitudes”, Acta Math., 22:1 (1899), 201–357 | DOI | MR | Zbl
[113] E. K. Sklyanin, “Separation of variables. New trends”, Quantum field theory, integrable models and beyond (Kyoto, 1994), Progr. Theoret. Phys. Suppl., 1995, no. 118, 35–60 | DOI | MR | Zbl
[114] A. V. Zotov, Yu. B. Chernyakov, “Integrable many-body systems via the Inosemtsev limit”, Theoret. and Math. Phys., 129:2 (2001), 1526–1542 | DOI | DOI | MR | Zbl
[115] A. V. Smirnov, “Integrable $sl(N,\mathbb C)$ tops as Calogero–Moser systems”, Theoret. and Math. Phys., 158:3 (2009), 300–312 ; Correspondence between Calogero–Moser systems and integrable SL(N,$\mathbb C$) Euler–Arnold tops, 2008, 14 pp., arXiv: 0809.2187 | DOI | DOI | MR | Zbl
[116] G. Aminov, S. Arthamonov, New $2\times 2$-matrix linear problems for the Painlevé equations, 2011 (v2 – 2012), 18 pp., arXiv: 1112.4688
[117] G. Aminov, S. Artamonov, “Degenerating the elliptic Schlesinger system”, Theoret. and Math. Phys., 174:1 (2013), 1–20 | DOI | DOI
[118] A. Levin, A. Zotov, “On rational and elliptic forms of Painlevé VI equation”, Moscow Seminar on mathematical physics. II, Amer. Math. Soc. Transl. Ser. 2, 221, Amer. Math. Soc., Providence, RI, 2007, 173–183 | MR | Zbl
[119] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990, xx+328 pp. | DOI | MR | MR | Zbl | Zbl
[120] D. B. Fairlie, P. Fletcher, C. K. Zachos, “Infinite dimensional algebras and a trigonometric basis for the classical Lie algebras”, J. Math. Phys., 31:5 (1990), 1088–1094 | DOI | MR | Zbl
[121] D. Mumford, Tata lectures on theta, v. I, Progr. Math., 28, Birkhäuser Boston, Inc., Boston, MA, 1983, xiii+235 pp. ; v. II, Progr. Math., 43, 1984, xiv+272 pp. | DOI | MR | Zbl | MR | Zbl
[122] A. Weil, Elliptic functions according to Eisenstein and Kronecker, Ergeb. Math. Grenzgeb., 88, Springer-Verlag, Berlin–New York, 1976, ii+93 pp. | MR | MR | Zbl
[123] N. L. Gordeev, V. L. Popov, “Automorphism groups of finite dimensional simple algebras”, Ann. of Math. (2), 158:3 (2003), 1041–1065 | DOI | MR | Zbl