Classification of isomonodromy problems on elliptic curves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 1, pp. 35-118
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper describes isomonodromy problems in terms of flat $G$-bundles over punctured elliptic curves $\Sigma_\tau$ and connections with regular singularities at marked points. The bundles are classified by their characteristic classes, which are elements of the second cohomology group $H^2(\Sigma_\tau,{\mathscr Z}(G))$, where ${\mathscr Z}(G)$ is the centre of $G$. For any complex simple Lie group $G$ and any characteristic class the moduli space of flat connections is defined, and for them the monodromy-preserving deformation equations are given in Hamiltonian form together with the corresponding Lax representation. In particular, they include the Painlevé VI equation, its multicomponent generalizations, and the elliptic Schlesinger equations. The general construction is described for punctured complex curves of arbitrary genus. The Drinfeld–Simpson (double coset) description of the moduli space of Higgs bundles is generalized to the case of the space of flat connections. This local description makes it possible to establish the Symplectic Hecke Correspondence for a wide class of monodromy-preserving problems classified by the characteristic classes of the underlying bundles. In particular, the Painlevé VI equation can be described in terms of $\operatorname{SL}(2,{\mathbb C})$-bundles. Since ${\mathscr Z}(\operatorname{SL}(2,{\mathbb C}))={\mathbb Z}_2$, the Painlevé VI equation has two representations related by the Hecke transformation: 1) as the well-known elliptic form of the Painlevé VI equation (for trivial bundles); 2) as the non-autonomous Zhukovsky–Volterra gyrostat (for non-trivial bundles).
Bibliography: 123 titles.
Keywords:
monodromy-preserving deformations, Painlevé equations, flat connections, Schlesinger systems, Higgs bundles.
@article{RM_2014_69_1_a1,
author = {A. M. Levin and M. A. Olshanetsky and A. V. Zotov},
title = {Classification of isomonodromy problems on elliptic curves},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {35--118},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_1_a1/}
}
TY - JOUR AU - A. M. Levin AU - M. A. Olshanetsky AU - A. V. Zotov TI - Classification of isomonodromy problems on elliptic curves JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 35 EP - 118 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2014_69_1_a1/ LA - en ID - RM_2014_69_1_a1 ER -
%0 Journal Article %A A. M. Levin %A M. A. Olshanetsky %A A. V. Zotov %T Classification of isomonodromy problems on elliptic curves %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 35-118 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2014_69_1_a1/ %G en %F RM_2014_69_1_a1
A. M. Levin; M. A. Olshanetsky; A. V. Zotov. Classification of isomonodromy problems on elliptic curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 1, pp. 35-118. http://geodesic.mathdoc.fr/item/RM_2014_69_1_a1/