On analytic insolubility of the stability problem on the plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 5, pp. 923-949 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey on questions involving algebraic and analytic solubility of the problem of stability of a singular point of a vector field on the plane, and in particular of the problem of distinguishing between a centre and a focus. It is proved that the stability problem on the plane is analytically insoluble. Bibliography: 30 titles.
Keywords: vector field, focus, Newton diagram, blow-up of singularities.
Mots-clés : monodromic singular point, centre, monodromy transformation
@article{RM_2013_68_5_a3,
     author = {N. B. Medvedeva},
     title = {On analytic insolubility of the stability problem on the plane},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {923--949},
     year = {2013},
     volume = {68},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_5_a3/}
}
TY  - JOUR
AU  - N. B. Medvedeva
TI  - On analytic insolubility of the stability problem on the plane
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 923
EP  - 949
VL  - 68
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_5_a3/
LA  - en
ID  - RM_2013_68_5_a3
ER  - 
%0 Journal Article
%A N. B. Medvedeva
%T On analytic insolubility of the stability problem on the plane
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 923-949
%V 68
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2013_68_5_a3/
%G en
%F RM_2013_68_5_a3
N. B. Medvedeva. On analytic insolubility of the stability problem on the plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 5, pp. 923-949. http://geodesic.mathdoc.fr/item/RM_2013_68_5_a3/

[1] V. I. Arnol'd, “Local problems of analysis”, Mosc. Univ. Math. Bull., 25(1970):1-2 (1972), 77–80 | MR | Zbl | Zbl

[2] V. I. Arnol'd, Yu. S. Ilyashenko, “Ordinary differential equations”, Dynamical systems, I, Encyclopaedia Math. Sci., 1, Springer, Berlin, 1988, 1–148 | MR | MR | Zbl | Zbl

[3] Yu. S. Il'yashenko, “Algebraically and analytically solvable local problems in the theory of ordinary differential equations”, J. Soviet Math., 47:3 (1989), 2570–2584 | DOI | MR | Zbl

[4] N. B. Medvedeva, “On the analytic solvability of the problem of distinguishing between center and focus”, Proc. Steklov Inst. Math., 254:1 (2006), 7–93 | DOI | MR

[5] V. I. Arnol'd, “Algebraic unsolvability of the problem of Lyapunov stability and the problem of topological classification of singular points of an analytic system of differential equations”, Funct. Anal. Appl., 4:3 (1970), 173–180 | DOI | MR | Zbl

[6] Yu. S. Il'yashenko, “Analytic unsolvability of the stability problem and the problem of topological classification of the singular points of analytic systems of differential equations”, Math. USSR-Sb., 28:2 (1976), 140–152 | DOI | MR | Zbl

[7] Yu. S. Il'yashenko, Finiteness theorems for limit cycles, Transl. Math. Monogr., 94, Amer. Math. Soc., Providence, RI, 1991, x+288 pp. | MR | Zbl

[8] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gostekhizdat, M.–L., 1947, 392 pp.

[9] A. M. Lyapunov, Sobranie sochinenii, v. 2, Izd-vo AN SSSR, M.–L., 1956, 472 pp. | MR | Zbl

[10] A. M. Lyapunov, The general problem of the stability of motion, With a biography of Lyapunov by V. I. Smirnov and a bibliography of Lyapunov's works by J. F. Barrett, ed. A. T. Fuller, Taylor Francis, London, 1992, ix+270 pp. | MR | Zbl | Zbl

[11] R. Moussu, “Symmétrie et forme normale des centres et foyers dégénérés”, Ergodic Theory Dynam. Systems, 2:2 (1982), 241–251 | DOI | MR | Zbl

[12] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, NJ, 1960, viii+523 pp. | MR | MR | Zbl | Zbl

[13] F. Dumortier, “Singularities of vector fields on the plane”, J. Differential Equations, 23:1 (1977), 53–106 | DOI | MR | Zbl

[14] Yu. S. Il'yashenko, “Algebraic nonsolvability and almost algebraic solvability of the center-focus problem”, Funct. Anal. Appl., 6:3 (1972), 197–202 | DOI | MR | Zbl

[15] N. B. Medvedeva, “On an analytic solvability of the center–focus problem”, Dokl. Math., 69:1 (2004), 120–122 | MR | Zbl

[16] F. S. Berezovskaya, N. B. Medvedeva, “The asymptotics of the return map of a singular point with fixed Newton diagram”, J. Soviet Math., 60:6 (1992), 1765–1781 | DOI | MR | MR | Zbl

[17] N. B. Medvedeva, “A monodromy criterion for a singular point of a vector field on the plane”, St. Petersburg Math. J., 13:2 (2002), 253–268 | MR | Zbl

[18] N. B. Medvedeva, E. V. Mazaeva, “A sufficient focus condition for a monodromic singular point”, Trans. Moscow Math. Soc., 2002 (2003), 77–103 | MR | Zbl

[19] A. D. Bruno, Local methods in nonlinear differential equations, Part I. The local method of nonlinear analysis of differential equations. Part II. The sets of analyticity of a normalizing transformation, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1989, x+348 pp. | MR | MR | Zbl | Zbl

[20] F. S. Berezovskaya, Slozhnaya statsionarnaya tochka sistemy na ploskosti: struktura okrestnosti i indeks, Preprint, ONTI NTsBI, Puschino, 1978, 15 pp.

[21] M. Frommer, “Die Integralkurven einer gewohnlichen Differentialgleichung erster Ordnung in der Umgebung rationaler Unbestimmtheitsstellen”, Math. Ann., 99 (1928), 222–272 | Zbl

[22] E. A. Gorin, “Asymptotic properties of polynomials and algebraic functions of several variables”, Russian Math. Surveys, 16:1 (1961), 93–119 | DOI | MR | Zbl

[23] V. P. Varin, “Poincaré map for some polynomial systems of differential equations”, Sb. Math., 195:7 (2004), 917–934 | DOI | DOI | MR | Zbl

[24] H. Dulac, “Sur les cycles limites”, Bull. Soc. Math. France, 51 (1923), 45–188 | MR | Zbl | Zbl

[25] Yu. S. Il'yashenko, “Dulac's memoir ‘On limit cycles’ and related problems of the local theory of differential equations”, Russian Math. Surveys, 40:6 (1985), 1–49 | DOI | MR | Zbl

[26] N. B. Medvedeva, “Principal term of the monodromy transformation of a monodromic singular point is linear”, Siberian Math. J., 33:2 (1992), 280–288 | DOI | MR | Zbl

[27] A. S. Voronin, N. B. Medvedeva, “Asimptotika preobrazovaniya monodromii v sluchae dvukh chetnykh reber diagrammy Nyutona”, Vestn. Chelyab. gos. un-ta. Ser. 3. Matem. Mekh. Inform., 27(242):14 (2011), 12–26

[28] A. S. Voronin, N. B. Medvedeva, “Ustoichivost monodromnykh osobykh tochek s fiksirovannoi diagrammoi Nyutona”, Vestn. Udmurt. un-ta. Ser. Matem. Mekh. Kompyuternye nauki, 3 (2009), 34–49

[29] A. S. Voronin, N. B. Medvedeva, “Asymptotics of the monodromy transformation in certain classes of monodromy germs”, Izv. Math., 77:2 (2013), 253–270 | DOI | DOI | Zbl

[30] J. Hadamard, Le problème de Cauchy et les équations aux derivées partielles linéaires hyperboliques, Hermann, Paris, 1932, 542 pp. | MR | Zbl