Limit theorems for suspension flows over Vershik automorphisms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 5, pp. 789-860 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper an asymptotic expansion of ergodic integrals for suspension flows over Vershik automorphisms is obtained and a limit theorem for these flows is given. Bibliography: 49 titles.
Keywords: Vershik automorphisms, renormalization, rate of convergence in the ergodic theorem, limit theorems, finitely additive invariant measures, Teichmüller flow, Kontsevich–Zorich cocycle.
Mots-clés : Forni invariant distributions
@article{RM_2013_68_5_a0,
     author = {A. I. Bufetov},
     title = {Limit theorems for suspension flows over {Vershik} automorphisms},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {789--860},
     year = {2013},
     volume = {68},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_5_a0/}
}
TY  - JOUR
AU  - A. I. Bufetov
TI  - Limit theorems for suspension flows over Vershik automorphisms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 789
EP  - 860
VL  - 68
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_5_a0/
LA  - en
ID  - RM_2013_68_5_a0
ER  - 
%0 Journal Article
%A A. I. Bufetov
%T Limit theorems for suspension flows over Vershik automorphisms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 789-860
%V 68
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2013_68_5_a0/
%G en
%F RM_2013_68_5_a0
A. I. Bufetov. Limit theorems for suspension flows over Vershik automorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 5, pp. 789-860. http://geodesic.mathdoc.fr/item/RM_2013_68_5_a0/

[1] B. Adamczewski, “Symbolic discrepancy and self-similar dynamics”, Ann. Inst. Fourier (Grenoble), 54:7 (2004), 2201–2234 | DOI | MR | Zbl

[2] P. Arnoux, A. M. Fisher, “Anosov families, renormalization and non-stationary subshifts”, Ergodic Theory Dynam. Systems, 25:3 (2005), 661–709 | DOI | MR | Zbl

[3] A. Avila, G. Forni, “Weak mixing for interval exchange transformations and translation flows”, Ann. of Math. (2), 165:2 (2007), 637–664 | DOI | MR | Zbl

[4] A. Avila, M. Viana, “Simplicity of Lyapunov spectra: proof of the Zorich–Kontsevich conjecture”, Acta Math., 198:1 (2007), 1–56 | DOI | MR | Zbl

[5] L. Barreira, Ya. Pesin, Nonuniform hyperbolicity. Dynamics of systems with nonzero Lyapunov exponents, Encyclopedia Math. Appl., 115, Cambridge Univ. Press, Cambridge, 2007, xiv+513 pp. | MR | Zbl

[6] P. Billingsley, Convergence of probability measures, Wiley Ser. Probab. Statist. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1999, x+277 pp. ; P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp. | DOI | MR | Zbl | MR

[7] V. I. Bogachev, Measure theory. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl

[8] F. Bonahon, “Transverse Hölder distributions for geodesic laminations”, Topology, 36:1 (1997), 103–122 | DOI | MR | Zbl

[9] F. Bonahon, “Geodesic laminations with transverse Hölder distributions”, Ann. Sci. École Norm. Sup. (4), 30:2 (1997), 205–240 | DOI | MR | Zbl

[10] X. Bressaud, P. Hubert, A. Maass, “Persistence of wandering intervals in self-similar affine interval exchange transformations”, Ergodic Theory Dynam. Systems, 30:3 (2010), 665–686 | DOI | MR | Zbl

[11] A. I. Bufetov, “Decay of correlations for the Rauzy–Veech–Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of Abelian differentials”, J. Amer. Math. Soc., 19:3 (2006), 579–623 | DOI | MR | Zbl

[12] A. I. Bufetov, “Hölder cocycles and ergodic integrals for translation flows on flat surfaces”, Electron. Res. Announc. Math. Sci., 17 (2010), 34–42 | DOI | MR | Zbl

[13] A. I. Bufetov, “Ergodic integrals of translation flows on flat surfaces”, Russian Math. Surveys, 65:6 (2010), 1173–1174 | DOI | DOI | MR | Zbl

[14] A. I. Bufetov, Limit theorems for translation flows, arXiv: 1212.5574

[15] A. I. Bufetov, B. M. Gurevich, “Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials”, Sb. Math., 202:7 (2011), 935–970 | DOI | DOI | MR | Zbl

[16] J.-M. Dumont, T. Kamae, S. Takahashi, “Minimal cocycles with the scaling property and substitutions”, Israel J. Math., 95 (1996), 393–410 | DOI | MR | Zbl

[17] A. Eskin, M. Kontsevich, A. Zorich, “Lyapunov spectrum of square-tiled cyclic covers”, J. Mod. Dyn., 5:2 (2011), 319–353 ; (2010), arXiv: 1007.5330 | DOI | MR | Zbl

[18] A. M. Fisher, “Nonstationary mixing and the unique ergodicity of adic transformations”, Stoch. Dyn., 9:3 (2009), 335–391 | DOI | MR | Zbl

[19] L. Flaminio, G. Forni, “Invariant distributions and time averages for horocycle flows”, Duke Math. J., 119:3 (2003), 465–526 | DOI | MR | Zbl

[20] G. Forni, “Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus”, Ann. of Math. (2), 146:2 (1997), 295–344 | DOI | MR | Zbl

[21] G. Forni, “Deviation of ergodic averages for area-preserving flows on surfaces of higher genus”, Ann. of Math. (2), 155:1 (2002), 1–103 | DOI | MR | Zbl

[22] G. Forni, Sobolev regularity of solutions of the cohomological equation, 2007, 119 pp., arXiv: 0707.0940

[23] G. Forni, A geometric criterion for the nonuniform hyperbolicity of the Kontsevich–Zorich cocycle, 2010, 46 pp., arXiv: 1009.4655

[24] H. Furstenberg, Stationary processes and prediction theory, Ann. of Math. Stud., 44, Princeton Univ. Press, Princeton, NJ, 1960, x+283 pp. | MR | Zbl

[25] R. Gjerde, Ør. Johansen, “Bratteli–Vershik models for Cantor minimal systems associated to interval exchange transformations”, Math. Scand., 90:1 (2002), 87–100 | MR | Zbl

[26] Sh. Ito, “A construction of transversal flows for maximal Markov automorphisms”, Tokyo J. Math., 1:2 (1978), 305–324 | DOI | MR | Zbl

[27] T. Kamae, “Linear expansions, strictly ergodic homogeneous cocycles and fractals”, Israel J. Math., 106:1 (1998), 313–337 | DOI | MR | Zbl

[28] A. B. Katok, “Invariant measures of flows on orientable surfaces”, Soviet Math. Dokl., 14 (1973), 1104–1108 | MR | Zbl

[29] M. Kontsevich, “Lyapunov exponents and Hodge theory”, The mathematical beauty of physics (Saclay, 1996), Adv. Ser. Math. Phys., 24, World Sci. Publ., River Edge, NJ, 1997, 318–332 | MR | Zbl

[30] M. Kontsevich, A. Zorich, “Connected components of the moduli spaces of Abelian differentials with prescribed singularities”, Invent. Math., 153:3 (2003), 631–678 | DOI | MR | Zbl

[31] S. Marmi, P. Moussa, J.-C. Yoccoz, “The cohomological equation for Roth-type interval exchange maps”, J. Amer. Math. Soc., 18:4 (2005), 823–872 (electronic) | DOI | MR | Zbl

[32] S. Marmi, P. Moussa, J.-C. Yoccoz, Affine interval exchange maps with a wandering interval, arXiv: 0805.4737

[33] H. Masur, “Interval exchange transformations and measured foliations”, Ann. of Math. (2), 115:1 (1982), 169–200 | DOI | MR | Zbl

[34] V. I. Oseledets, “A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Moscow Math. Soc., 19 (1968), 197–231 | MR | Zbl

[35] Ya. G. Sinai, C. Ulcigrai, “Weak mixing in interval exchange transformations of periodic type”, Lett. Math. Phys., 74:2 (2005), 111–133 | DOI | MR | Zbl

[36] B. Solomyak, “On the spectral theory of adic transformations”, Representation theory and dynamical systems, Adv. Soviet Math., 9, Amer. Math. Soc., Providence, RI, 1992, 217–230 | MR | Zbl

[37] W. A. Veech, “Gauss measures for transformations on the space of interval exchange maps”, Ann. of Math. (2), 115:1 (1982), 201–242 | DOI | MR | Zbl

[38] W. A. Veech, “The metric theory of interval exchange transformations. I. Generic spectral properties”, Amer. J. Math., 106:6 (1984), 1331–1359 | DOI | MR | Zbl

[39] W. A. Veech, “The metric theory of interval exchange transformations. II. Approximation by primitive interval exchanges”, Amer. J. Math., 106:6 (1984), 1361–1387 | DOI | MR | Zbl

[40] W. A. Veech, “The metric theory of interval exchange transformations. III. The Sah–Arnoux–Fathi invariant”, Amer. J. Math., 106:6 (1984), 1389–1422 | DOI | MR | Zbl

[41] W. A. Veech, “The Teichmüller geodesic flow”, Ann. of Math. (2), 124:3 (1986), 441–530 | DOI | MR | Zbl

[42] W. A. Veech, “Moduli spaces of quadratic differentials”, J. Analyse Math., 55:1 (1990), 117–171 | DOI | MR | Zbl

[43] W. A. Veech, “Decoding Rauzy induction: Bufetov's question”, Mosc. Math. J., 10:3 (2010), 647–657 | MR | Zbl

[44] A. M. Vershik, “A theorem on the Markov periodic approximation in ergodic theory”, J. Soviet Math., 28:5 (1985), 667–674 | DOI | MR | Zbl

[45] A. M. Vershik, “The adic realizations of the ergodic actions with the homeomorphisms of the Markov compact and the ordered Bratteli diagrams”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. I, Zap. nauch. sem. POMI, 223, POMI, SPb., 1995, 120–126 ; J. Math. Sci. (New York), 87:6 (1997), 4054–4058 | MR | Zbl | DOI

[46] A. M. Vershik, A. N. Livshits, “Adic models of ergodic transformations, spectral theory, substitutions, and related topics”, Representation theory and dynamical systems, Adv. Soviet Math., 9, Amer. Math. Soc., Providence, RI, 1992, 185–204 | MR | Zbl

[47] M. Viana, Lyapunov exponents of Teichmüller flows, Preprint IMPA, 2007, 64 pp. {9pt}\selectfont http://www.preprint.impa.br/FullText/Viana__Fri_Dec_29_10_54_53_BRDT_2006/lt.pdf} \fontsize{8.5

[48] A. Zorich, “Deviation for interval exchange transformations”, Ergodic Theory Dynam. Systems, 17:6 (1997), 1477–1499 | DOI | MR | Zbl

[49] A. Zorich, “How do the leaves of a closed 1-form wind around a surface?”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Amer. Math. Soc., Providence, RI, 1999, 135–178 | MR | Zbl