@article{RM_2013_68_4_a7,
author = {A. V. Komlov and S. P. Suetin},
title = {An asymptotic formula for a~two-point analogue of {Jacobi} polynomials},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {779--781},
year = {2013},
volume = {68},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2013_68_4_a7/}
}
TY - JOUR AU - A. V. Komlov AU - S. P. Suetin TI - An asymptotic formula for a two-point analogue of Jacobi polynomials JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 779 EP - 781 VL - 68 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2013_68_4_a7/ LA - en ID - RM_2013_68_4_a7 ER -
A. V. Komlov; S. P. Suetin. An asymptotic formula for a two-point analogue of Jacobi polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 4, pp. 779-781. http://geodesic.mathdoc.fr/item/RM_2013_68_4_a7/
[1] A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, UMN, 66:6(402) (2011), 37–122 | DOI | DOI | MR | Zbl
[2] A. I. Aptekarev, M. L. Yattselev, arXiv: 1109.0332
[3] V. I. Buslaev, Matem. sb., 204:2 (2013), 39–72 | DOI | DOI
[4] V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, Tr. MIAN, 279, MAIK, M., 2012, 31–58 | DOI
[5] A. Martines-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, Matem. sb., 202:12 (2011), 113–136 | DOI | DOI | MR | Zbl
[6] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, OPSFA'11, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 165–193 | DOI | MR | Zbl
[7] A. Martines-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, UMN, 68:1(409) (2013), 197–198 | DOI | DOI | Zbl
[8] J. Nuttall, Constr. Approx., 2:1 (1986), 59–77 | DOI | MR | Zbl
[9] H. Stahl, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl
[10] S. P. Suetin, Matem. sb., 194:12 (2003), 63–92 | DOI | DOI | MR | Zbl
[11] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp. | MR | Zbl | Zbl