An asymptotic formula for a two-point analogue of Jacobi polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 4, pp. 779-781 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2013_68_4_a7,
     author = {A. V. Komlov and S. P. Suetin},
     title = {An asymptotic formula for a~two-point analogue of {Jacobi} polynomials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {779--781},
     year = {2013},
     volume = {68},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_4_a7/}
}
TY  - JOUR
AU  - A. V. Komlov
AU  - S. P. Suetin
TI  - An asymptotic formula for a two-point analogue of Jacobi polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 779
EP  - 781
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_4_a7/
LA  - en
ID  - RM_2013_68_4_a7
ER  - 
%0 Journal Article
%A A. V. Komlov
%A S. P. Suetin
%T An asymptotic formula for a two-point analogue of Jacobi polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 779-781
%V 68
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2013_68_4_a7/
%G en
%F RM_2013_68_4_a7
A. V. Komlov; S. P. Suetin. An asymptotic formula for a two-point analogue of Jacobi polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 4, pp. 779-781. http://geodesic.mathdoc.fr/item/RM_2013_68_4_a7/

[1] A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, UMN, 66:6(402) (2011), 37–122 | DOI | DOI | MR | Zbl

[2] A. I. Aptekarev, M. L. Yattselev, arXiv: 1109.0332

[3] V. I. Buslaev, Matem. sb., 204:2 (2013), 39–72 | DOI | DOI

[4] V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, Tr. MIAN, 279, MAIK, M., 2012, 31–58 | DOI

[5] A. Martines-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, Matem. sb., 202:12 (2011), 113–136 | DOI | DOI | MR | Zbl

[6] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, OPSFA'11, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 165–193 | DOI | MR | Zbl

[7] A. Martines-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, UMN, 68:1(409) (2013), 197–198 | DOI | DOI | Zbl

[8] J. Nuttall, Constr. Approx., 2:1 (1986), 59–77 | DOI | MR | Zbl

[9] H. Stahl, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl

[10] S. P. Suetin, Matem. sb., 194:12 (2003), 63–92 | DOI | DOI | MR | Zbl

[11] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp. | MR | Zbl | Zbl