The accuracy of strong Gaussian approximation for sums of independent random vectors
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 4, pp. 721-761
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is a survey of recent results on the accuracy of strong Gaussian approximation for sums of independent random vectors. They give multidimensional generalizations of one-dimensional results due to Komlós, Major, and Tusnády, as well as to Sakhanenko, and improve upon Einmahl's multidimensional results. Infinite-dimensional analogues of these results are also presented.
Bibliography: 102 titles.
Keywords:
multidimensional invariance principle, strong approximation, sums of independent random vectors.
@article{RM_2013_68_4_a2,
author = {A. Yu. Zaitsev},
title = {The accuracy of strong {Gaussian} approximation for sums of independent random vectors},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {721--761},
publisher = {mathdoc},
volume = {68},
number = {4},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2013_68_4_a2/}
}
TY - JOUR AU - A. Yu. Zaitsev TI - The accuracy of strong Gaussian approximation for sums of independent random vectors JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 721 EP - 761 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2013_68_4_a2/ LA - en ID - RM_2013_68_4_a2 ER -
A. Yu. Zaitsev. The accuracy of strong Gaussian approximation for sums of independent random vectors. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 4, pp. 721-761. http://geodesic.mathdoc.fr/item/RM_2013_68_4_a2/