The accuracy of strong Gaussian approximation for sums of independent random vectors
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 4, pp. 721-761 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a survey of recent results on the accuracy of strong Gaussian approximation for sums of independent random vectors. They give multidimensional generalizations of one-dimensional results due to Komlós, Major, and Tusnády, as well as to Sakhanenko, and improve upon Einmahl's multidimensional results. Infinite-dimensional analogues of these results are also presented. Bibliography: 102 titles.
Keywords: multidimensional invariance principle, strong approximation, sums of independent random vectors.
@article{RM_2013_68_4_a2,
     author = {A. Yu. Zaitsev},
     title = {The accuracy of strong {Gaussian} approximation for sums of independent random vectors},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {721--761},
     year = {2013},
     volume = {68},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_4_a2/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - The accuracy of strong Gaussian approximation for sums of independent random vectors
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 721
EP  - 761
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_4_a2/
LA  - en
ID  - RM_2013_68_4_a2
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T The accuracy of strong Gaussian approximation for sums of independent random vectors
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 721-761
%V 68
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2013_68_4_a2/
%G en
%F RM_2013_68_4_a2
A. Yu. Zaitsev. The accuracy of strong Gaussian approximation for sums of independent random vectors. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 4, pp. 721-761. http://geodesic.mathdoc.fr/item/RM_2013_68_4_a2/

[1] P. Bártfai, “Die Bestimmung der zu einem wiederkehrenden Prozess gehörenden Verteilungfunktion aus den mit Fehlern behafteten Daten einer einzigen Realisation”, Studia Sci. Math. Hungar., 1 (1966), 161–168 | MR | Zbl

[2] V. Bentkus, F. Götze, V. Paulauskas, A. Račkauskas, “The accuracy of Gaussian approximation in Banach spaces”, Limit theorems of probability theory, Springer-Verlag, Berlin, 2000, 25–111 | DOI | MR | MR | Zbl | Zbl

[3] E. Berger, Fast sichere Approximationen von Partialsummen unabhängiger und stationärer ergodischer Folgen von Zufallsvectoren, Dissertation, Universität zu Göttingen, 1982, 73 pp.

[4] I. Berkes, W. Philipp, “Approximation theorems for independent and weakly dependent random vectors”, Ann. Probab., 7:1 (1979), 29–54 | DOI | MR | Zbl

[5] I. Berkes, S. Hörmann, “Almost sure invariance principles for dependent sequences”, Electr. J. Probab., 2013 (to appear)

[6] I. Berkes, Weidong Liu, Wei Biao Wu, “Komlós–Major–Tusnády approximation under dependence”, Ann. Probab., 2013 (to appear)

[7] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl

[8] I. S. Borisov, “On the rate of convergence in Donsker–Prohorov invariance principle”, Theory Probab. Appl., 28:2 (1984), 388–393 | DOI | MR | Zbl

[9] A. A. Borovkov, “On the rate of convergence for the invariance principle”, Theory Probab. Appl., 18:2 (1972), 207–225 | DOI | MR | Zbl

[10] A. A. Borovkov, A. A. Mogulskii, A. I. Sakhanenko, “Predelnye teoremy dlya sluchainykh protsessov”, Teoriya veroyatnostei – 7, Itogi nauki i tekhniki. Sovrem. probl. matem. Fundam. napr., 82, VINITI, M., 1995, 5–194 | MR | Zbl

[11] A. A. Borovkov, A. I. Sahanenko, “On estimates of the rate of convergence in the invariance principle for Banach spaces”, Theory Probab. Appl., 25:4 (1981), 721–731 | DOI | MR | Zbl

[12] A. A. Borovkov, A. I. Sakhanenko, “On the rate of convergence in invariance principle”, Probability theory and mathematical statistics (Tbilisi, 1982), Lecture Notes in Math., 1021, Springer, Berlin, 1983, 59–66 | DOI | MR | Zbl

[13] K. A. Borovkov, “On the convergence rate in the invariance principle”, Theory Probab. Appl., 29:3 (1985), 550–553 | DOI | MR | Zbl

[14] A. N. Borodin, I. A. Ibragimov, “Limit theorems for functionals of random walks”, Proc. Steklov Inst. Math., 195:2 (1995), 1–259 | MR | Zbl

[15] A. Bovier, D. M. Mason, “Extreme value behaviour in the Hopfield model”, Ann. Appl. Probab., 11:1 (2001), 91–120 | DOI | MR | Zbl

[16] L. Breiman, “On the tail behavior of sums of independent random variables”, Z. Wahrscheinlichkeitstheor. verw. Geb., 9:1 (1967), 20–25 | DOI | MR | Zbl

[17] S. Chatterjee, “A new approach to strong embeddings”, Probab. Theory Related Fields, 152:1-2 (2012), 231–264 | DOI | MR | Zbl

[18] M. Csörgő, “A glimpse of the KMT (1975) approximation of empirical processes by Brownian bridges via quantiles”, Acta Sci. Math. (Szeged), 73:1-2 (2007), 349–366 | MR | Zbl

[19] S. Csörgő, P. Hall, “The Komlós–Major–Tusnády approximations and their applications”, Austral. J. Statist., 26:2 (1984), 189–218 | DOI | MR | Zbl

[20] M. Csörgő, P. Révész, “A new method to prove Strassen type laws of invariance principle. I”, Z. Wahrscheinlichkeitstheor. verw. Geb., 31 (1974/1975), 255–259 ; “II”, 261–269 | DOI | MR | Zbl | DOI | Zbl

[21] M. Csörgő, P. Révész, Strong approximations in probability and statistics, Probab. Math. Statist., Academic Press, Inc., New York–London, 1981, 284 pp. | MR | Zbl

[22] A. de Acosta, “Inequalities for $B$-valued random vectors with applications to the strong law of large numbers”, Ann. Probab., 9:1 (1981), 157–161 | DOI | MR | Zbl

[23] V. H. de la Peña, E. Giné, Decoupling. From dependence to independence. Randomly stopped processes. $U$-statistics and processes. Martingales and beyond, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1999, xvi+392 pp. | DOI | MR | Zbl

[24] M. D. Donsker, An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc., 1951, No 6, 1951, 12 pp. | MR | Zbl

[25] M. D. Donsker, “Justification and extension of Doob's heuristic approach to the Kolmogorov–Smirnov theorems”, Ann. Math. Statist., 23:2 (1952), 277–281 | DOI | MR | Zbl

[26] J. L. Doob, “Heuristic approach to the Kolmogorov–Smirnov theorems”, Ann. Math. Statist., 20:3 (1949), 393–403 | DOI | MR | Zbl

[27] R. M. Dudley, “Distances of probability measures and random variables”, Ann. Math. Statist., 39:5 (1968), 1563–1572 | MR | Zbl

[28] U. Einmahl, A refinement of the KMT inequality for partial sum strong approximation, Techn. Rep. Ser. Lab. Res. Statist. Probab., 88, Carleton Univ., Ottawa, ON, 1986, 113 pp.

[29] U. Einmahl, “A useful estimate in the multidimensional invariance principle”, Probab. Theory Related Fields, 76:1 (1987), 81–101 | DOI | MR | Zbl

[30] U. Einmahl, “Strong invariance principles for partial sums of independent random vectors”, Ann. Probab., 15:4 (1987), 1419–1440 | DOI | MR | Zbl

[31] U. Einmahl, “Extensions of results of Komlós, Major, and Tusnády to the multivariate case”, J. Multivariate Anal., 28:1 (1989), 20–68 | DOI | MR | Zbl

[32] J. Math. Sci. (N. Y.), 163:4 (2010), 311–327 | DOI | MR

[33] U. Einmahl, J. Kuelbs, “Cluster sets for a generalized law of iterated logarithm in Banach spaces”, Ann. Probab., 29:4 (2001), 1451–1475 | DOI | MR | Zbl

[34] U. Einmahl, D. M. Mason, “Rates of clustering in Strassen's LIL for partial sums processes”, Probab. Theory Related Fields, 97:4 (1993), 479–487 | DOI | MR | Zbl

[35] U. Einmahl, D. M. Mason, “Gaussian approximation of local empirical processes indexed by functions”, Probab. Theory Related Fields, 107:3 (1997), 283–311 | DOI | MR | Zbl

[36] P. Erdős, M. Kac, “On certain limit theorems of the theory of probability”, Bull. Amer. Math. Soc., 52:4 (1946), 292–302 | DOI | MR | Zbl

[37] N. Etemadi, “On some classical results in probability theory”, Sankhyā Ser. A, 47:2 (1985), 215–221 | MR | Zbl

[38] D. H. Fuk, S. V. Nagaev, “Probability inequalities for sums of independent random variables”, Theory Probab. Appl., 16:4 (1971), 643–660 | DOI | MR | Zbl

[39] B. Gentz, M. Löwe, “Fluctuations in the Hopfield model at the critical temperature”, Markov Process. Related Fields, 5:4 (1999), 423–449 | MR | Zbl

[40] F. Götze, A. Yu. Zaitsev, “Multidimensional Hungarian construction for vectors with almost Gaussian smooth distributions”, Asymptotic methods in probability and statistics with applications (St. Petersburg, 1998), Stat. Ind. Technol., eds. N. Balakrishnan, I. Ibragimov, V. Nevzorov, Birkhäuser, Boston, MA, 2001, 101–132 | MR | Zbl

[41] Theory Probab. Appl., 53:1 (2009), 59–80 | DOI | DOI | MR | Zbl

[42] F. Götze, A. Yu. Zaitsev, “Rates of approximation in the multidimensional invariance principle for sums of i.i.d. random vectors with finite moments”, J. Math. Sci. (N. Y.), 167:4 (2010), 495–500 | DOI | MR

[43] F. Götze, A. Yu. Zaitsev, “Estimates for the rate of strong approximation in Hilbert space”, Sib. Math. J., 52:4 (2011), 628–638 | DOI | MR | Zbl

[44] V. V. Gorodetskii, “On the rate of convergence for the multidimensional invariance principle”, Theory Probab. Appl., 20:3 (1976), 631–638 | DOI | MR | Zbl

[45] I. Grama, M. Nussbaum, “A functional Hungarian construction for sums of independent random variables”, Ann. Inst. H. Poincaré Probab. Statist., 38:6 (2002), 923–957 | DOI | MR | Zbl

[46] N. C. Jain, K. Jogdeo, W. F. Stout, “Upper and lower functions for martingales and mixing processes”, Ann. Probab., 3:1 (1975), 119–145 | DOI | MR | Zbl

[47] W. B. Johnson, G. Schechtman, J. Zinn, “Best constants in moment inequalities for linear combinations of independent and exchangeable random variables”, Ann. Probab., 13:1 (1985), 234–253 | DOI | MR | Zbl

[48] J. Kiefer, “On the deviations in the Skorokhod–Strassen approximation scheme”, Z. Wahrscheinlichkeitstheor. verw. Geb., 13:3-4 (1969), 321–332 | DOI | MR | Zbl

[49] V. Koltchinskii, “Komlos–Major–Tusnády approximation for the general empirical process and Haar expansions of classes of functions”, J. Theoret. Probab., 7:1 (1994), 73–118 | DOI | MR | Zbl

[50] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV's, and the sample DF. I”, Z. Wahrscheinlichkeitstheor. verw. Geb., 32:1-2 (1975), 111–131 ; “II”, 34:1 (1976), 33–58 | DOI | MR | Zbl | DOI | MR | Zbl

[51] S. Kwapień, W. Woyczyński, Random series and stochastic integrals: single and multiple, Probab. Appl., Birkhäuser Boston, Inc., Boston, MA, 1992, xvi+360 pp. | MR | Zbl

[52] M. A. Lifshits, Lektsii po silnoi approksimatsii, Izd-vo SPbGU, SPb., 2007, 32 pp.

[53] P. Major, “The approximation of partial sums of independent RV's”, Z. Wahrscheinlichkeitstheor. verw. Geb., 35:3 (1976), 213–220 | DOI | MR | Zbl

[54] P. Major, “Approximation of partial sums of i.i.d. r.v.s when summands have only two moments”, Z. Wahrscheinlichkeitstheor. verw. Geb., 35:3 (1976), 221–229 | DOI | MR | Zbl

[55] P. Major, “On the invariance principle for sums of independent identically distributed random variables”, J. Multivariate Anal., 8:4 (1978), 487–517 | DOI | MR | Zbl

[56] P. Major, “An improvement of Strassen's invariance principle”, Ann. Probab., 7:1 (1979), 55–61 | DOI | MR | Zbl

[57] P. Massart, “Strong approximation for multivariate empirical and related processes, via KMT constructions”, Ann. Probab., 17:1 (1989), 266–291 | DOI | MR | Zbl

[58] S. J. Montgomery-Smith, “Comparison of sums of independent identically distributed random vectors”, Probab. Math. Statist., 14:2 (1993), 281–285 | MR | Zbl

[59] S. V. Nagaev, “Large deviations of sums of independent random variables”, Ann. Probab., 7:5 (1979), 745–789 | DOI | MR | Zbl

[60] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 318 pp. | MR | Zbl

[61] W. Philipp, “Almost sure invariance principles for sums of $B$-valued random variables”, Probability in Banach spaces II, Proceedings of the Second International Conference (Oberwolfach, 1978), Lecture Notes in Math., 709, Springer, Berlin, 1979, 171–193 | DOI | MR | Zbl

[62] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1 (1956), 177–238 | MR | Zbl

[63] Qi-Man Shao, “On a problem of Csörgő and Révész”, Ann. Probab., 17:2 (1989), 809–812 | DOI | MR | Zbl

[64] Qi Man Shao, “Strong approximation theorems for independent random variables and their applications”, J. Multivariate Anal., 52:1 (1995), 107–130 | DOI | MR | Zbl

[65] E. Rio, “Strong approximation for set-indexed partial sum processes via K.M.T. constructions. I”, Ann. Probab., 21:2 (1993), 759–790 | DOI | MR | Zbl

[66] E. Rio, “Local invariance principles and their applications to density estimation”, Probab. Theory Related Fields, 98:1 (1994), 21–45 | DOI | MR | Zbl

[67] E. Rio, “Vitesses de convergence dans le principe d'invariance faible pour la fonction de répartition empirique multivariée”, C. R. Acad. Sci. Paris Sér. I Math., 322:2 (1996), 169–172 | MR | Zbl

[68] M. Rosenblatt, “Remarks on a multivariate transformation”, Ann. Math. Statist., 23:1 (1952), 470–472 | DOI | MR | Zbl

[69] H. P. Rosenthal, “On the subspaces of $L^{p}$ ($p>2$) spanned by sequences of independent random variables”, Israel J. Math., 8:3 (1970), 273–303 | DOI | MR | Zbl

[70] H. P. Rosenthal, “On the span in $L^{p}$ of sequences of independent random variables. II”, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, CA, 1970/1971), v. II, Probability theory, Univ. California Press, Berkeley, CA, 1972, 149–167 | MR | Zbl

[71] R. Rudzkis, “Probabilities of large deviations of random vectors”, Lith. Math. J., 23:1 (1983), 113–120 | DOI | MR | Zbl

[72] A. I. Sakhanenko, “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh velichin s eksponentsialnymi momentami”, Predelnye teoremy dlya summ sluchainykh velichin, Tr. In-ta matem. SO AN SSSR, 3, Nauka, Novosibirsk, 1984, 4–49 | MR | Zbl

[73] A. I. Sakhanenko, “Otsenki v printsipe invariantnosti”, Predelnye teoremy teorii veroyatnostei, Tr. In-ta matem. SO AN SSSR, 5, Nauka, Novosibirsk, 1985, 27–44 | MR | Zbl

[74] A. I. Sakhanenko, “Simple method of obtaining estimates in the invariance principle”, Probability theory and mathematical statistics (Kyoto, 1986), Lecture Notes in Math., 1299, Springer, Berlin, 1988, 430–443 | DOI | MR | Zbl

[75] A. I. Sakhanenko, “O tochnosti silnoi normalnoi approksimatsii v printsipe invariantnosti”, Asimptoticheskii analiz raspredelenii sluchainykh protsessov, Tr. In-ta matem. SO AN SSSR, 13, Nauka, Novosibirsk, 1989, 40–66 | MR | Zbl

[76] A. I. Sakhanenko, “A new way to obtain estimates in the invariance principle”, High dimensional probability II (Seattle, WA, 1999), Progr. Probab., 47, Birkhäuser, Boston, MA, 2000, 223–245 | MR | Zbl

[77] A. I. Sakhanenko, “Estimates in the invariance principle in terms of truncated power moments”, Sib. Math. J., 47:6 (2006), 1113–1127 | DOI | MR | Zbl

[78] A. I. Sakhanenko, “A general estimate in the invariance principle”, Siberian Math. J., 52:4 (2011), 696–710 | DOI | MR | Zbl

[79] L. Saulis, “Large deviations for random vectors for certain classes of sets. I”, Lith. Math. J., 23:3 (1983), 308–317 | DOI | MR | Zbl

[80] G. Schay, “Nearest random variables with given distributions”, Ann. Probab., 2:1 (1974), 163–166 | DOI | MR | Zbl

[81] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl

[82] A. V. Skorokhod, Studies in the theory of random processes, Addison-Wesley, Reading, MA, 1965, viii+199 pp. | MR | MR | Zbl | Zbl

[83] V. A. Statulevičius, “On large deviations”, Z. Wahrscheinlichkeitstheor. verw. Geb., 6:2 (1966), 133–144 | DOI | MR | Zbl

[84] V. Strassen, “An invariance principle for the law of iterated logarithm”, Z. Wahrscheinlichkeitstheor. verw. Geb., 3 (1964), 211–226 | DOI | MR | Zbl

[85] V. Strassen, “The existence of probability measures with given marginals”, Ann. Math. Statist., 36:2 (1965), 423–439 | DOI | MR | Zbl

[86] V. Strassen, “Almost sure behavior of sums of independent random variables and martingales”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, CA, 1965/66), v. II, Contributions to probability theory, Part 1, Univ. California Press, Berkeley, CA, 1967, 315–343 | MR | Zbl

[87] A. Yu. Zaitsev, “Approximation by Gaussian distributions with satisfaction of multidimensional analogues of Bernstein's conditions”, Soviet Math. Dokl., 29:3 (1984), 624–626 | MR

[88] A. Yu. Zaitsev, O gaussovskoi approksimatsii svertok pri vypolnenii mnogomernykh analogov uslovii neravenstva Bernshteina, Preprint R-9-84, LOMI, L., 1984, 54 pp.

[89] A. Yu. Zaitsev, “Estimates of the Lévy–Prohorov distance in the multivariate central limit theorem for random vectors with finite exponential moments”, Theory Probab. Appl., 31:2 (1986), 203–220 | DOI | MR | Zbl

[90] A. Yu. Zaitsev, “On the Gaussian approximation of convolutions under multidimensional analogues of S. N. Bernstein's inequality conditions”, Probab. Theory Related Fields, 74:4 (1987), 535–566 | DOI | MR | Zbl

[91] A. Yu. Zaitsev, “O svyazi mezhdu dvumya klassami veroyatnostnykh raspredelenii”, Koltsa i moduli. Predelnye teoremy teorii veroyatnostei, Vyp. 2, Izd-vo LGU, L., 1988, 153–158 | MR

[92] A. Yu. Zaitsev, “Multidimensional version of the second uniform limit theorem of Kolmogorov”, Theory Probab. Appl., 34:1 (1989), 108–128 | DOI | MR | Zbl

[93] A. Yu. Zaitsev, “Estimates for the quantiles of smooth conditional distributions and the multidimensional invariance principle”, Sib. Math. J., 37:4 (1996), 706–729 | DOI | MR | Zbl

[94] A. Yu. Zajtsev, “Multidimensional variant of the Komlós, Major and Tusnády results for vectors with finite exponential moments”, Dokl. Math., 56:3 (1997), 935–937 | MR | Zbl

[95] A. Yu. Zaitsev, “Multidimensional version of the results of Komlós, Major, and Tusnády for vectors with finite exponential moments”, ESAIM Probab. Statist., 2 (1998), 41–108 (electronic) | DOI | MR | Zbl

[96] A. Yu. Zaitsev, “Multidimensional version of a results of Sakhanenko in the invariance principle for vectors with finite exponential moments. I”, Teoriya veroyatn. i ee primen., 45:4 (2000), 718–738 ; Theory Probab. Appl., 45:4 (2001), 624–641 ; “II”, РўРμРѕСЂРёСЏ РІРμроятн. Рё РμРμ РїСЂРёРјРμРЅ., 46:3 (2001), 535–561 ; Theory Probab. Appl., 46:3 (2002), 490–514 ; “III”, РўРμРѕСЂРёСЏ РІРμроятн. Рё РμРμ РїСЂРёРјРμРЅ., 46:4 (2001), 744–769 ; Theory Probab. Appl., 46:4 (2002), 676–698 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI

[97] A. Yu. Zaitsev, “On the strong Gaussian approximation in multidimensional case”, Ann. I.S.U.P., 45:2-3 (2001), 3–7 | MR | Zbl

[98] A. Yu. Zaitsev, “Estimates for the strong approximation in multidimensional central limit theorem”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. III, Higher Education Press, Bejing, 2002, 107–116 | MR | Zbl

[99] A. Yu. Zaitsev, “Estimates for the rate of strong approximation in the multidimensional invariance principle”, J. Math. Sci. (N. Y.), 145:2 (2007), 4856–4865 | DOI | MR | Zbl

[100] A. Yu. Zaitsev, “Estimates for the rate of strong Gaussian approximation for sums of i.i.d. multidimensional random vectors”, J. Math. Sci. (N. Y.), 152:6 (2008), 875–884 | DOI | MR

[101] A. Yu. Zaitsev, “The rate of Gaussian strong approximation for the sums of i.i.d. multidimensional random vectors”, J. Math. Sci. (N. Y.), 163:4 (2009), 399–408 | DOI | MR

[102] A. Yu. Zaitsev, “Optimal estimates for the rate of strong Gaussian approximation in a Hilbert space”, J. Math. Sci. (N. Y.), 188:6 (2013), 689–693 | DOI | MR