Fullerenes and disk-fullerenes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 4, pp. 665-720 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an $n$-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one $n$-gonal face and all other faces 5- and 6-gonal, by removing the $n$-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and $n$-disk-fullerenes is investigated. Bibliography: 87 titles.
Keywords: convex polyhedron, planar graph, fullerene, patch, disk-fullerene.
Mots-clés : polygon
@article{RM_2013_68_4_a1,
     author = {M. Deza and M. Dutour Sikiri\'c and M. I. Shtogrin},
     title = {Fullerenes and disk-fullerenes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {665--720},
     year = {2013},
     volume = {68},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_4_a1/}
}
TY  - JOUR
AU  - M. Deza
AU  - M. Dutour Sikirić
AU  - M. I. Shtogrin
TI  - Fullerenes and disk-fullerenes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 665
EP  - 720
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_4_a1/
LA  - en
ID  - RM_2013_68_4_a1
ER  - 
%0 Journal Article
%A M. Deza
%A M. Dutour Sikirić
%A M. I. Shtogrin
%T Fullerenes and disk-fullerenes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 665-720
%V 68
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2013_68_4_a1/
%G en
%F RM_2013_68_4_a1
M. Deza; M. Dutour Sikirić; M. I. Shtogrin. Fullerenes and disk-fullerenes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 4, pp. 665-720. http://geodesic.mathdoc.fr/item/RM_2013_68_4_a1/

[1] A. D. Alexandrov, Convex polyhedra, Springer Monogr. Math., Springer-Verlag, Berlin, 2005, xii+539 pp. | MR | MR | Zbl | Zbl

[2] A. D. Aleksandrov, Izbrannye trudy, v. 1, Nauka, Novosibirsk, 2006, lii+748 pp. ; С‚. 2, 2007, iv+492 СЃ.; С‚. 3, 2008, iv+734 СЃ. | MR

[3] D. A. Bochvar, E. G. Galpern, “O gipoteticheskikh sistemakh: karbododekaedre, $s$-ikosaedre i karbo-$s$-ikosaedre”, Dokl. AN SSSR, 209:3 (1973), 610–612

[4] G. Brinkmann, A. W. M. Dress, “A constructive enumeration of fullerenes”, J. Algorithms, 23:2 (1997), 345–358 | DOI | MR

[5] G. Brinkmann, P. W. Fowler, “A cataloque of growth transformations of fullerene polyhedra”, J. Chem. Inf. Comput. Sci., 43:6 (2003), 1837–1843 | DOI

[6] G. Brinkmann, N. Van Cleemput, “Classification and generation of nanocones”, Discrete Appl. Math., 159:15 (2011), 1528–1539 | DOI | MR | Zbl

[7] V. M. Buchstaber, “Ring of simple polytopes and differential equations”, Proc. Steklov Inst. Math., 263:1 (2008), 13–37 | DOI | MR | Zbl

[8] A. L. Cauchy, “Sur les polygones et polyèdres. Second mémoire”, J. Ecole Polytéchnique, 9 (1813), 87–98

[9] R. V. Galiulin, Kristallograficheskaya geometriya, Nauka, M., 1984, 136 pp. | MR | Zbl

[10] V. P. Grishukhin, Primitivnye $L$-tipy pyatimernykh reshetok, Preprint No WP/2007/229, TsEMI RAN, M., 2007, 47 pp.

[11] A. I. Gusev, Nanomaterialy, nanostruktury, nanotekhnologii, Fizmatlit, M., 2005, 416 pp.

[12] B. N. Delaunay, “Sur la partition régulière de l'espace à 4 dimensions. Première partie”, Izv. AN SSSR. VII ser. Otd. fiz.-matem. nauk, 1929, no. 1, 79–110 ; “Deuxième partie”, no. 2, 147–164 | Zbl

[13] B. N. Delaunay, “Neue Darstellung der geometrischen Kristallographie”, Z. Kristallogr., 84 (1933), 109–149

[14] O. Delgado-Friedrichs, M. O'Keeffe, “On a simple tiling of Deza and Shtogrin”, Acta Crystallogr. Sect. A, 62:3 (2006), 228–229 | DOI | MR

[15] B. N. Delone, “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 3 (1937), 16–62 ; “Часть II”, 4 (1938), 102–164

[16] B. N. Delone, The St. Petersburg school of number theory, Hist. Math., 26, Amer. Math. Soc., Providence, RI, 2005, xvi+278 pp. | MR | MR | Zbl | Zbl

[17] B. N. Delone, “Reduction theory”, Soviet Physics Cryst., 5 (1960), 482–488 | MR | Zbl

[18] B. N. Delone, “A supplement to my paper of 1933 on the reduction of a crystallographic lattice”, Soviet Math. Dokl., 6 (1965), 449–452 | MR | Zbl

[19] B. N. Delone, “Mnogogrannik”, BSE, v. 16, Sovetskaya entsiklopediya, M., 1974, 363–366

[20] B. N. Delone, “24 sorta kristallicheskikh reshetok”, Nauka i chelovechestvo, Znanie, M., 1981, 160–173

[21] B. N. Delone, “Mnogogrannik”, Matematicheskii entsiklopedicheskii slovar, Sovetskaya entsiklopediya, M., 1988, 370–373 | MR | Zbl

[22] B. N. Delone, A. D. Aleksandrov, N. N. Padurov, Matematicheskie osnovy strukturnogo analiza kristallov i opredelenie osnovnogo parallelepipeda povtoryaemosti pri pomoschi rentgenovskikh luchei, Gostekhizdat, M., L., 1934, 328 pp. | Zbl

[23] B. N. Delone, N. P. Dolbilin, M. I. Štogrin, R. V. Galiulin, “A local test for the regularity of a system of points”, Soviet Math. Dokl., 17:2 (1976), 319–322 | MR | Zbl

[24] B. N. Delone, M. I. Shtogrin, “Ob odnoi demonstratsionnoi modeli, naglyadno pokazyvayuschei izmenenie simmetrii reshetki pri izmenenii samoi reshetki”, Problemy sovremennoi kristallografii, Nauka, M., 1975, 27–42

[25] M. Deza, M. Dutour, “Zigzag structures of simple two-faced polyhedra”, Combin. Probab. Comput., 14:1-2 (2005), 31–57 | DOI | MR | Zbl

[26] M. Deza, M. Dutour, P. W. Fowler, “Zigzags, railroads, and knots in fullerenes”, J. Chem. Inf. Comput. Sci., 44:4 (2004), 1282–1293 | DOI

[27] M. Deza, M. Dutour Sikirić, Geometry of chemical graphs: polycycles and two-faced maps, Encyclopedia Math. Appl., 119, Cambridge Univ. Press, 2008, x+306 pp. | DOI | MR | Zbl

[28] M. Deza, M. Dutour Sikirić, M. Shtogrin, “Filling of a given boundary by $p$-gons and related problem”, Discrete Appl. Math., 156:9 (2008), 1518–1535 | DOI | MR | Zbl

[29] M. Deza, M. Dutour Sikirić, M. Shtogrin, “Fullerene-like spheres with faces of negative curvature”, Diamond and related nanostructures, Carbon materials: Chemistry and Physics, 6, eds. M. V. Diudea, C. L. Nagy, Springer, Dordrecht, 2013, 251–274 ; 2011, arXiv: 1112.3320 | DOI

[30] M. Deza, P. W. Fowler, V. Grishukhin, “Allowed boundary sequences for fused polycyclic patches and related algorithmic problems”, J. Chem. Inf. Comput. Sci., 41:2 (2001), 300–308 | DOI

[31] M. Deza, P. W. Fowler, M. Shtogrin, “Version of zones and zigzag structure in icosahedral fullerenes and icosadeltahedra”, J. Chem. Inf. Comput. Sci., 43:2 (2003), 595–599 | DOI

[32] M. Deza, S. V. Shpektorov, M. I. Shtogrin, “Non-extendible finite polycycles”, Izv. Math., 70:1 (2006), 1–18 | DOI | DOI | MR | Zbl

[33] M. Deza, M. Shtogrin, “Three-, four-, and five-dimensional fullerenes”, Southeast Asian Bull. Math., 23:1 (1999), 9–18 | MR | Zbl

[34] M. Deza, M. I. Shtogrin, “Embeddings of chemical graphs in hypercubes”, Math. Notes, 68:3 (2000), 295–305 | DOI | DOI | MR | Zbl

[35] M. Deza, M. I. Shtogrin, “Extremal and nonextendible polycycles”, Proc. Steklov Inst. Math., 239:4 (2002), 117–135 | MR | Zbl

[36] M. Deza, M. Shtogrin, “Clusters of cycles”, J. Geom. Phys., 40:3-4 (2002), 302–319 | DOI | MR | Zbl

[37] M. Deza, M. Shtogrin, “Octahedrites”, Symmetry Cult. Sci., 11:1-4, Special issue “Polyhedra” (2000), 27–64 | MR | Zbl

[38] M. Deza, M. I. Shtogrin, “Types and boundary uniqueness of polypentagons”, Russian Math. Surveys, 61:6 (2006), 1170–1172 | DOI | DOI | MR | Zbl

[39] M. Deza, M. I. Shtogrin, “New examples of generalized fullerenes”, Russian Math. Surveys, 64:1 (2009), 139–141 | DOI | DOI | MR | Zbl

[40] N. P. Dolbilin, “Local properties of discrete regular systems”, Soviet Math. Dokl., 17:5 (1976), 1333–1337 | MR | Zbl

[41] N. P. Dolbilin, “The extension theorem”, Discrete Math., 221:1-3 (2000), 43–59 | DOI | MR | Zbl

[42] N. P. Dolbilin, “Properties of faces of parallelohedra”, Proc. Steklov Inst. Math., 266:1 (2009), 105–119 | DOI | MR | Zbl

[43] N. P. Dolbilin, “Boris Nikolaevich Delone (Delaunay): life and work”, Proc. Steklov Inst. Math., 275:1 (2011), 1–14 | DOI | MR

[44] N. P. Dolbilin, “Parallelohedra: a retrospective and new results”, Trans. Mosc. Math. Soc., 2012, 2012, 207–220 | DOI | Zbl

[45] N. Dolbilin, J.-i. Itoh, C. Nara, “Affine equivalent classes of parallelohedra”, Computational geometry, graphs and applications, Lecture Notes in Comput. Sci., 7033, Springer, Heidelberg, 2011, 55–60 | DOI | MR | Zbl

[46] N. P. Dolbilin, V. S. Makarov, “Extension theorem in the theory of isohedral tilings and its applications”, Proc. Steklov Inst. Math., 239:4 (2002), 136–158 | MR | Zbl

[47] M. Dutour Sikirić, O. Delgado-Friedrichs, M. Deza, “Space fullerenes: computer search for new Frank–Kaspar structures”, Acta Cryst. Sect. A, 66:5 (2010), 602–615 | DOI

[48] M. Dutour Sikirić, M. Deza, “Space fullerenes: computer search for new Frank–Kaspar structures, II”, Structural Chemistry, 23:4 (2012), 1103–1114 | DOI

[49] P. Engel, “The contraction types of parallelohedra in $E^5$”, Acta Cryst. Sect. A, 56:5 (2000), 491–496 | DOI | MR | Zbl

[50] P. Engel, V. Grishukhin, “There are exactly 222 $L$-types of primitive five-dimensional lattices”, European J. Combin., 23:3 (2002), 275–279 | DOI | MR | Zbl

[51] R. Erdahl, “Zonotopes, dicings, and Voronoi's conjecture on parallelohedra”, European J. Combin., 20:6 (1999), 527–549 | DOI | MR | Zbl

[52] L. Euler, “Solutio problematis ad geometriam situs pertinentis”, Comment. Acad. Sci. Petrop., 8 (1736/1741), 128–140; Opera Omnia, Ser. 1, 7 (1766), 1–10

[53] E. S. Fedorov, Nachala ucheniya o figurakh, S.-Peterburg, 1885, 279 pp. | MR

[54] P. W. Fowler, D. E. Manolopoulos, An atlas of fullerenes, Oxford Univ. Press, Oxford, 1995, 392 pp.

[55] F. C. Frank, J. S. Kasper, “Complex alloy structures regarded as sphere packings. I. Definitions and basic principles”, Acta Cryst., 11:3 (1958), 184–190 ; “II. Analysis and classification of representative structures”, 12:7 (1959), 483–499 | DOI | DOI

[56] M. Goldberg, “The isoperimetric problem for polyhedra”, Tohoku Math. J., 40 (1935), 226–236 | Zbl

[57] J. E. Graver, C. Graves, “Fullerene patches. I”, Ars Math. Contemp., 3:1 (2010), 109–120 | MR | Zbl

[58] B. Grünbaum, T. S. Motzkin, “The number of hexagons and the simplicity of geodesics on certain polyhedra”, Canad. J. Math., 15 (1963), 744–751 | DOI | MR | Zbl

[59] X. Guo, P. Hansen, M. Zheng, “Boundary uniquenes of fusenes”, Discrete Appl. Math., 118:3 (2002), 209–222 | DOI | MR | Zbl

[60] F. Harary, Graph theory, Addison-Wesley Publishing Co., Reading, MA–Menlo Park, CA–London, 1969, ix+274 pp. | MR | Zbl

[61] N. F. M. Henry, K. Lonsdale (eds.), International tables for $X$-ray crystallography, v. I, Symmetry groups, Kynoch Press, Birmingham, 1952, 558 pp.

[62] X. Jiang, H. Zhang, “On forcing matching number of boron-nitrogen fullerene graphs”, Discrete Appl. Math., 159:15 (2011), 1581–1593 | DOI | MR | Zbl

[63] H. W. Kroto, “$\mathrm C_{60}^{\mathrm B}$ buckminsterfullerene, other fullerene and the icospiral shell”, Comput. Math. Appl., 17:1-3 (1989), 417–423 | DOI | MR

[64] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, “$\mathrm C_{60}$: Buckminsterfullerene”, Nature, 318 (1985), 162–163 | DOI

[65] L. Michel, S. S. Ryshkov, M. Senechal, “An extension of Voronoĭ's theorem on primitive parallelotopes”, European J. Combin., 16:1 (1995), 59–63 | DOI | MR | Zbl

[66] H. Minkowski, “Allgemeine Lehrsätze über die konvexe Polyeder”, Gött. Nachr., 1897, 198–219 | Zbl

[67] S. P. Olovyanishnikov, “Obobschenie teoremy Koshi o vypuklykh mnogogrannikakh”, Matem. sb., 18(60):3 (1946), 441–446 | MR | Zbl

[68] E. Osawa, “Superaromaticity”, Kagaku (Kyoto), 25 (1970), 854–863

[69] S. S. Ryškov, “The polyhedron $\mu(m)$ and some extremal problems of the geometry of numbers”, Soviet Math. Dokl., 11 (1970), 1240–1244 | MR | Zbl

[70] S. S. Ryshkov, “Maximal finite groups of $n\times n$ integral matrices and full integral automorphism groups of positive quadratic forms (Bravais types)”, Proc. Steklov Inst. Math., 128(1972) (1974), 217–250 | MR | MR | Zbl | Zbl

[71] S. S. Ryškov, “$C$-types of $n$-dimensional parallelohedra”, Soviet Math. Dokl., 14 (1973):5 (1974), 1314–1318 | MR | Zbl

[72] S. S. Ryshkov, E. P. Baranovskii, “$C$-types of $n$-dimensional lattices and 5-dimensional primitive parallelohedra (with application to the theory of coverings)”, Proc. Steklov Inst. Math., 137 (1976), 1–140 | MR | Zbl

[73] S. S. Ryshkov, K. A. Rybnikov, Jr., “Generatrissa. The Maxwell and Voronoĭ problems”, Dokl. Math., 54:1 (1996), 614–617 | MR | Zbl

[74] S. S. Ryshkov, K. A. Rybnikov, Jr., “The theory of quality translations with applications to tilings”, European J. Combin., 18:4 (1997), 431–444 | DOI | MR | Zbl

[75] H. Seifert, W. Threlfall, Lehrbuch der Topologie, B. G. Teubner, Leipzig, 1934, iv+353 pp. | Zbl

[76] M. Senechal, “Which tetrahedra fill space?”, Math. Mag., 54:5 (1981), 227–243 | DOI | MR | Zbl

[77] M. I. Shtogrin, “Regular Dirichlet–Voronoi partitions for the second triclinic group”, Proc. Steklov Inst. Math., 123 (1973) (1975), 1–116 | MR | MR | Zbl | Zbl

[78] M. I. Shtogrin, “Nenormalnye razbieniya trekhmernogo evklidova prostranstva na vypuklye paralleloedry i ikh simmetriya”, Vsesoyuznyi simpozium po teorii simmetrii i ee obobscheniyam, Tezisy dokladov, Kishinevskii gos. un-t, Kishinev, 1980, 129–130 | MR

[79] M. I. Shtogrin, “Degeneracy criterion for a convex polyhedron”, Russian Math. Surveys, 67:5 (2012), 951–953 | DOI | DOI | MR | Zbl

[80] E. Steinitz, H. Rademacher, Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie, Grundlehren Math. Wiss., 41, Springer, Berlin, 1934, viii+351 pp. | MR | Zbl

[81] B. A. Venkov, “Kommentarii k rabote ‘O nekotorykh svoistvakh polozhitelnykh sovershennykh kvadratichnykh form’ ”, G. F. Voronoi. Sobr. soch., v. 2, Izd-vo AN USSR, Kiev, 1952, 379–382 | MR | Zbl

[82] B. A. Venkov, “Ob odnom klasse evklidovykh mnogogrannikov”, Vestn. Leningr. un-ta. Matem. Fiz. Khim., 9:2 (1954), 11–31 | MR

[83] G. Voronoi, “Nouvelles applications des paramètres continus à la théorie de formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs”, J. Reine Angew. Math., 134 (1908), 198–287 | Zbl

[84] G. F. Voronoi, “O nekotorykh svoistvakh polozhitelnykh sovershennykh kvadratichnykh form”, Sobr. soch., v. 2, Izd-vo AN USSR, Kiev, 1952, 171–238 | MR | Zbl

[85] H. Whitney, “A set of topological invariants for graphs”, Amer. J. Math., 55:1-4 (1933), 231–235 | DOI | MR | Zbl

[86] A. A. Zilberberg, “O suschestvovanii zamknutykh vypuklykh mnogogrannikov s proizvolnymi zadannymi kriviznami vershin”, UMN, 17:4(106) (1962), 119–136 | MR | Zbl

[87] O. Zitomirskij, “Verschärfung eines Satzes von Woronoi”, Zhurn. Leningr. fiz.-matem. o-va, II:2 (1929), 131–151