@article{RM_2013_68_4_a0,
author = {A. Gogatishvili and V. D. Stepanov},
title = {Reduction theorems for weighted integral inequalities on the cone of monotone functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {597--664},
year = {2013},
volume = {68},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2013_68_4_a0/}
}
TY - JOUR AU - A. Gogatishvili AU - V. D. Stepanov TI - Reduction theorems for weighted integral inequalities on the cone of monotone functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 597 EP - 664 VL - 68 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2013_68_4_a0/ LA - en ID - RM_2013_68_4_a0 ER -
%0 Journal Article %A A. Gogatishvili %A V. D. Stepanov %T Reduction theorems for weighted integral inequalities on the cone of monotone functions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 597-664 %V 68 %N 4 %U http://geodesic.mathdoc.fr/item/RM_2013_68_4_a0/ %G en %F RM_2013_68_4_a0
A. Gogatishvili; V. D. Stepanov. Reduction theorems for weighted integral inequalities on the cone of monotone functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 4, pp. 597-664. http://geodesic.mathdoc.fr/item/RM_2013_68_4_a0/
[1] M. Ariño, B. Muckenhoupt, “Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions”, Trans. Amer. Math. Soc., 320:2 (1990), 727–735 | DOI | MR | Zbl
[2] G. Bennett, K.-G. Grosse-Erdmann, “Weighted Hardy inequalities for decreasing sequences and functions”, Math. Ann., 334:3 (2006), 489–531 | DOI | MR | Zbl
[3] E. I. Berezhnoi, “Sharp estimates for operators on cones in ideal spaces”, Proc. Steklov Inst. Math., 204:3 (1994), 1–25 | MR | Zbl
[4] S. Bloom, R. Kerman, “Weighted norm inequalities for operators of Hardy type”, Proc. Amer. Math. Soc., 113:1 (1991), 135–141 | DOI | MR | Zbl
[5] M. Sh. Braverman, “On a class of operators”, J. London Math. Soc. (2), 47:1 (1993), 119–128 | DOI | MR | Zbl
[6] V. I. Burenkov, M. L. Goldman, “Calculation of the norm of a positive operator on the cone of monotone functions”, Proc. Steklov Inst. Math., 210 (1995), 47–65 | MR | Zbl
[7] M. J. Carro, A. Gogatishvili, J. Martin, L. Pick, “Function properties of rearrangement invariant spaces defined in terms of oscillations”, J. Funct. Anal., 229:2 (2005), 375–404 | DOI | MR | Zbl
[8] M. Carro, A. Gogatishvili, J. Martin, L. Pick, “Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces”, J. Operator Theory, 59:2 (2008), 309–332 | MR | Zbl
[9] M. Carro, L. Pick, J. Soria, V. D. Stepanov, “On embeddings between clasical Lorentz spaces”, Math. Inequal. Appl., 4:3 (2001), 397–428 | DOI | MR | Zbl
[10] M. J. Carro, J. A. Raposo, J. Soria, Recent developments in the theory of Lorentz spaces and weighted inequalities, Mem. Amer. Math. Soc., 187, No 877, 2007, xii+128 pp. | DOI | MR | Zbl
[11] M. Carro, J. Soria, “Weighted Lorentz spaces and the Hardy operator”, J. Funct. Anal., 112:2 (1993), 480–494 | DOI | MR | Zbl
[12] M. Carro, J. Soria, “Boundedness of some integral operators”, Canad. J. Math., 45 (1993), 1155–1166 | DOI | MR | Zbl
[13] M. Carro, J. Soria, “The Hardy–Littlewood maximal function and weighted Lorentz spaces”, J. London Math. Soc. (2), 55:1 (1997), 146–158 | DOI | MR | Zbl
[14] P. Drábek, H. P. Heinig, A. Kufner, “Weighted modular inequalities for monotone functions”, J. Inequal. Appl., 1:2 (1997), 183–197 | DOI | MR | Zbl
[15] D. E. Edmunds, W. D. Evans, Hardy operators, function spaces and embeddings, Springer Monogr. Math., Springer-Verlag, Berlin, 2004, xii+326 pp. | DOI | MR | Zbl
[16] D. E. Edmunds, V. D. Stepanov, “The measure of non-compactness and approximation numbers of certain Volterra integral operators”, Math. Ann., 298:1 (1994), 41–66 | DOI | MR | Zbl
[17] D. E. Edmunds, V. D. Stepanov, “On the singular numbers of certain Volterra integral operators”, J. Funct. Anal., 134:1 (1995), 222–246 | DOI | MR | Zbl
[18] W. D. Evans, A. Gogatishvili, B. Opic, “The reverse Hardy inequality with measures”, Math. Inequal. Appl., 11:1 (2008), 43–74 | DOI | MR | Zbl
[19] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963, 339 pp. ; I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Izrael Program for Scientific Translations, Jerusalem, 1965 ; Daniel Davey Co., Inc., New York, 1966, ix+234 pp. | MR | Zbl | MR | Zbl
[20] A. Gogatishvili, M. Johansson, C. A. Okpoti, L.-E. Persson, “Characterisation of embeddings in Lorentz spaces”, Bull. Austral. Math. Soc., 76:1 (2007), 69–92 | DOI | MR | Zbl
[21] A. Gogatishvili, A. Kufner, L.-E. Persson, A. Wedestig, “An equivalence theorem for integral conditions related to Hardy's inequality”, Real Anal. Exchange, 29:2 (2003/04), 867–880 | MR | Zbl
[22] A. Gogatishvili, K. Kuliev, G. Kulieva, “Some conditions characterizing the ‘reverse’ Hardy inequality”, Real Anal. Exchange, 33:1 (2008), 249–258 | MR | Zbl
[23] A. Gogatishvili, B. Opic, L. Pick, “Weighted inequalities for Hardy-type operators involving suprema”, Collect. Math., 57:3 (2006), 227–255 | MR | Zbl
[24] A. Gogatishvili, L. Pick, “Duality principles and reduction theorems”, Math. Inequal. Appl., 3:4 (2000), 539–558 | DOI | MR | Zbl
[25] A. Gogatishvili, L. Pick, “Discretization and anti-discretization of rearrangement-invariant norms”, Publ. Mat., 47:2 (2003), 311–358 | DOI | MR | Zbl
[26] A. Gogatishvili, L. Pick, “Embeddings and duality theorem for weak classical Lorentz spaces”, Canad. Math. Bull., 49:1 (2006), 82–95 | DOI | MR | Zbl
[27] A. Gogatishvili, L. Pick, “A reduction theorem for supremum operators”, J. Comput. Appl. Math., 208:1 (2007), 270–279 | DOI | MR | Zbl
[28] A. Gogatishvili, V. D. Stepanov, “Operators on cones of monotone functions”, Dokl. Math., 86:1 (2012), 562–565 | DOI | MR | Zbl
[29] A. Gogatishvili, V. D. Stepanov, “Integral operators on cones of monotone functions”, Dokl. Math., 86:2 (2012), 650–653 | DOI | MR | Zbl
[30] A. Gogatishvili, V. D. Stepanov, “Reduction theorems for operators on the cones of monotone functions”, J. Math. Anal. Appl., 405:1 (2013), 156–172 | DOI | MR
[31] M. L. Gol'dman, “Sharp estimates for the norms of Hardy-type operators on the cones of quasimonotone functions”, Proc. Steklov Inst. Math., 232 (2001), 109–137 | MR | Zbl
[32] M. L. Goldman, “On equivalent criteria for the boundedness of Hardy type operators on the cone of decreasing functions”, Anal. Math., 37:2 (2011), 83–102 | DOI | MR | Zbl
[33] M. L. Goldman, “Order-sharp estimates for Hardy-type operators on cones of quasimonotone functions”, Eurasian Math. J., 2:3 (2011), 143–146 | MR | Zbl
[34] M. L. Goldman, “Order-sharp estimates for Hardy-type operators on the cones of functions with properties of monotonicity”, Eurasian Math. J., 3:2 (2011), 53–84 | MR | Zbl
[35] M. L. Gol'dman, H. P. Heinig, V. D. Stepanov, “On the principle of duality in Lorentz spaces”, Canad. J. Math., 48:5 (1996), 959–979 | DOI | MR | Zbl
[36] M. L. Gol'dman, M. V. Sorokina, “Three-weighted Hardy-type inequalities on the cone of quasimonotone functions”, Dokl. Math., 71:2 (2005), 209–213 | MR
[37] M. L. Gol'dman, V. D. Stepanov, H. P. Heinig, “On the principle of duality in Lorentz spaces”, Dokl. Math., 52:2 (1995), 264–267 | MR | Zbl
[38] P. R. Halmos, V. S. Sunder, Bounded integral operators on $L^2$ spaces, Ergeb. Math. Grenzgeb., 96, Springer-Verlag, Berlin–New York, 1978, xv+132 pp. | MR | MR | Zbl | Zbl
[39] I. Halperin, “Function spaces”, Canad. J. Math., 5 (1953), 273–288 | DOI | MR | Zbl
[40] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, 1934, xii+314 pp. | MR | MR | Zbl
[41] H. P. Heinig, A. Kufner, “Hardy operators on monotone functions and sequences in Orlicz spaces”, J. London Math. Soc. (2), 53:2 (1996), 256–270 | DOI | MR | Zbl
[42] H. P. Heinig, Q. Lai, “Weighted modular inequalities for Hardy-type operators on monotone functions”, JIPAM. J. Inequal. Pure Appl. Math., 1:1 (2000), Article 10, 25 pp. (electronic) | MR | Zbl
[43] H. P. Heinig, L. Maligranda, “Weighted inequalities for monotone and concave functions”, Studia Math., 116:2 (1995), 133–165 | MR | Zbl
[44] H. P. Heinig, V. D. Stepanov, “Weighted Hardy inequalities for increasing functions”, Canad. J. Math., 45:1 (1993), 104–116 | DOI | MR | Zbl
[45] M. Johansson, V. D. Stepanov, E. P. Ushakova, “Hardy inequality with three measures on monotone functions”, Math. Inequal. Appl., 11:3 (2008), 393–413 | DOI | MR | Zbl
[46] W. B. Jurkat, G. Sampson, “The complete solution to the $(L^p,L^q)$ mapping problem for a class of oscillating kernels”, Indiana Univ. Math. J., 30:3 (1981), 403–413 | DOI | MR | Zbl
[47] A. Kamińska, M. Mastyło, “Abstract duality Sawyer formula and its applications”, Monatsh. Math., 151:3 (2007), 223–245 | DOI | MR | Zbl
[48] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford-Elmsford, NY, 1982, xiv+589 pp. | MR | MR | Zbl | Zbl
[49] V. B. Korotkov, Integralnye operatory, Nauka, Novosibirsk, 1983, 224 pp. | MR | Zbl
[50] M. A. Krasnosel'skĭ, P. P. Zabreĭko, E. I. Pustyl'nik, P. E. Sobolevskiĭ, Integral operators in spaces of summable functions, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis, Noordhoff International Publishing, Leiden, 1976, xv+520 pp. | MR | MR | Zbl | Zbl
[51] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality: About its history and some related results, Vydavatelský Servis, Plzeň, 2007, 162 pp. | MR | Zbl
[52] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific Publishing Co., Inc., River Edge, NJ, 2003, xviii+357 pp. | MR | Zbl
[53] Sh. Lai, “Weighted norm inequalities for general operators on monotone functions”, Trans. Amer. Math. Soc., 340:2 (1993), 811–836 | DOI | MR | Zbl
[54] Q. Lai, “Weighted modular inequalities for Hardy-type operators”, Proc. London Math. Soc. (3), 79:3 (1999), 649–672 | DOI | MR | Zbl
[55] E. Liflyand, S. Tikhonov, “A concept of general monotonicity and applications”, Math. Nachr., 284:8-9 (2011), 1083–1098 | DOI | MR | Zbl
[56] M. A. Lifshits, W. Linde, Approximation and entropy numbers of Volterra operators with application to Brownian motion, Mem. Amer. Math. Soc., 157, No 745, 2002, viii+87 pp. | DOI | MR | Zbl
[57] E. N. Lomakina, V. D. Stepanov, “On the compactness and approximation numbers of Hardy-type integral operators in Lorentz spaces”, J. London Math. Soc. (2), 53:2 (1996), 369–383 | DOI | MR | Zbl
[58] E. N. Lomakina, V. D. Stepanov, “On the Hardy-type integral operators in Banach function spaces”, Publ. Mat., 42:1 (1998), 165–194 | DOI | MR | Zbl
[59] E. N. Lomakina, V. D. Stepanov, “On asymptotic behaviour of the approximation numbers and estimates of Schatten–von Neumann norms of the Hardy-type integral operators”, Function spaces and applications (Delhi, 1997), Narosa, New Delhi, 2000, 153–187 | MR | Zbl
[60] E. N. Lomakina, V. D. Stepanov, “Asymptotic estimates for the approximation and entropy numbers of a one-weight Riemann–Liouville operator”, Siberian Adv. Math., 17:1 (2007), 1–36 | DOI | MR | MR | Zbl
[61] M. Lorente, “A characterization of two weight norm inequalities for one-sided operators of fractional type”, Canad. J. Math., 49:5 (1997), 1010–1033 | DOI | MR | Zbl
[62] L. Maligranda, “Weighted inequalities for quasi-monotone functions”, J. London Math. Soc. (2), 57:2 (1998), 363–370 | DOI | MR | Zbl
[63] P. J. Martin-Reyes, E. T. Sawyer, “Weighted inequalities for Riemann–Liouville fractional integrals of order one and greater”, Proc. Amer. Math. Soc., 106:3 (1989), 727–733 | DOI | MR | Zbl
[64] V. G. Mazya, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | MR | MR | Zbl | Zbl
[65] A. Meskhi, “Solution of some weight problems for the Riemann–Liouville and Weyl operators”, Georgian Math. J., 5:6 (1998), 565–574 | DOI | MR | Zbl
[66] E. A. Myasnikov, L.-E. Persson, V. D. Stepanov, “On the best constants in certain integral inequalities for monotone functions”, Acta Sci. Math. (Szeged), 59:3-4 (1994), 613–624 | MR | Zbl
[67] C. J. Neugebauer, “Weighted norm inequalities for averaging operators of monotone functions”, Publ. Mat., 35:2 (1991), 429–447 | DOI | MR | Zbl
[68] C. J. Neugebauer, “Some classical operators on Lorentz space”, Forum Math., 4:2 (1992), 135–146 | DOI | MR | Zbl
[69] J. Newman, M. Solomyak, “Two-sided estimates on singular values for a class of integral operators on the semi-axis”, Integral Equations Operator Theory, 20:3 (1994), 335–349 | DOI | MR | Zbl
[70] E. Nursultanov, S. Tikhonov, “Convolution inequalities in Lorentz spaces”, J. Fourier Anal. Appl., 17:3 (2011), 486–505 | DOI | MR | Zbl
[71] R. Oĭnarov, “Two-sided estimates for the norm of some classes of integral operators”, Proc. Steklov Inst. Math., 204:3 (1994), 205–214 | MR | Zbl
[72] G. O. Okikiolu, Aspects of the theory of bounded integral operators in $L^p$ spaces, Academic Press, London–New York, 1971, ix+522 pp. | MR | Zbl
[73] L.-E. Persson, O. V. Popova, V. D. Stepanov, “Two-sided Hardy-type inequalities for monotone functions”, Complex Var. Elliptic Equ., 55:8-10 (2010), 973–989 | DOI | MR | Zbl
[74] L.-E. Persson, D. Prokhorov, “Integral inequalities for some weighted geometric mean operators with variable limits”, Arch. Ineq. Appl., 2:4 (2004), 475–482 | MR | Zbl
[75] L.-E. Persson, V. D. Stepanov, “Weighted integral inequalities with the geometric mean operator”, J. Inequal. Appl., 7:5 (2002), 727–746 | DOI | MR | Zbl
[76] L. E. Persson, V. D. Stepanov, E. P. Ushakova, “Equivalence of Hardy-type inequalities with general measures on the cones of non-negative respective non-increasing functions”, Proc. Amer. Math. Soc., 134:8 (2006), 2363–2372 | DOI | MR | Zbl
[77] L.-E. Persson, V. D. Stepanov, P. Wall, “Some scales of equivalent weight characterizations of Hardy's inequality: the case $q
$”, Math. Inequal. Appl., 10:2 (2007), 267–279 | DOI | MR | Zbl[78] O. V. Popova, “Hardy-type inequalities on the cones of monotone functions”, Sib. Math. J., 53:1 (2012), 152–167 | DOI | MR | Zbl
[79] D. V. Prokhorov, “On the boundedness and compactness of a class of integral operators”, J. London Math. Soc. (2), 61:2 (2000), 617–628 | DOI | MR | Zbl
[80] D. V. Prokhorov, “Weighted Hardy's inequalities for negative indices”, Publ. Mat., 48:2 (2004), 423–443 | DOI | MR | Zbl
[81] D. V. Prokhorov, “Hardy's inequality with three measures”, Proc. Steklov Inst. Math., 255:1 (2006), 221–233 | DOI | MR
[82] D. V. Prokhorov, “Inequalities of Hardy type for a class of integral operators with measures”, Anal. Math., 33:3 (2007), 199–225 | DOI | MR | Zbl
[83] D. V. Prokhorov, “Inequalities for Riemann–Liouville operator involving suprema”, Collect. Math., 61:3 (2010), 263–276 | DOI | MR | Zbl
[84] D. V. Prokhorov, “Lorentz norm inequalities for the Hardy operator involving suprema”, Proc. Amer. Math. Soc., 140:5 (2012), 1585–1592 | DOI | MR | Zbl
[85] D. V. Prokhorov, A new characterization of the Hardy-type weighted norm inequalities, Res. Rep. 2013/192, Computing Centre FEB RAS, Khabarovsk, 2013, 11 pp.
[86] D. V. Prokhorov, V. D. Stepanov, “Weighted estimates of Riemann–Liouville operators and applications”, Proc. Steklov Inst. Math., 243:4 (2003), 278–301 | MR | Zbl
[87] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158 | MR | Zbl
[88] G. Sinnamon, “Spaces defined by the level functions and their duals”, Studia Math., 111:1 (1994), 19–52 | MR | Zbl
[89] G. Sinnamon, “Embeddings of concave functions and duals of Lorentz spaces”, Publ. Mat., 46:2 (2002), 489–515 | DOI | MR | Zbl
[90] G. Sinnamon, “Transferring monotonicity in weighted norm inequalities”, Collect. Math., 54:2 (2003), 181–216 | MR | Zbl
[91] G. Sinnamon, “Hardy's inequality and monotonicity”, Function spaces, differential operators and nonlinear analysis, Proc. Conf. (Milovy, Czech Republ., May 28–June 2, 2004), eds. P. Drábec, J. Rákosnik, Math. Inst. Acad. Sci. Czech Republ., Prague, 2005, 292–310
[92] G. Sinnamon, V. D. Stepanov, “The weighted Hardy inequality: new proofs and the case $p=1$”, J. London Math. Soc. (2), 54:1 (1996), 89–101 | DOI | MR | Zbl
[93] M. Solomyak, “Estimates for the approximation numbers of the weighted Riemann–Liouville operator in the spaces $L_p$”, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 371–383 | MR | Zbl
[94] J. Soria, “Lorentz spaces of weak-type”, Quart. J. Math. Oxford Ser. (2), 49:1 (1998), 93–103 | DOI | MR | Zbl
[95] V. D. Stepanov, Two-weighted estimates for Riemann–Liouville integrals, Rep. No 39, Math. Inst. Czechoslovak Acad. Sci., Prague, 1988, 28 pp.
[96] V. D. Stepanov, “On a weighted inequality of Hardy type for derivatives of higher order”, Proc. Steklov Inst. Math., 187:3 (1990), 205–220 | MR | Zbl
[97] V. D. Stepanov, “Weight inequalities of Hardy type for fractional Riemann–Liouville integrals”, Sib. Math. J., 31:3 (1990), 513–522 | DOI | MR | Zbl
[98] V. D. Stepanov, “Two-weighted estimates of Riemann–Liouville integrals”, Math. USSR-Izv., 36:3 (1991), 669–681 | DOI | MR | Zbl
[99] V. D. Stepanov, “Boundedness of linear integral operators on a class of monotone functions”, Sib. Math. J., 32:3 (1991), 540–542 | DOI | MR | Zbl
[100] V. D. Stepanov, “Weighted inequalities for a class of Volterra convolution operators”, J. London Math. Soc. (2), 45:2 (1992), 232–242 | DOI | MR | Zbl
[101] V. D. Stepanov, D. E. Edmunds, “On the measure of noncompactness and approximation numbers of a class of Volterra integral operators”, Russian Acad. Sci. Dokl. Math., 47:3 (1993), 618–623 | MR | Zbl
[102] V. D. Stepanov, “On weighted estimates for a class of integral operators”, Sib. Math. J., 34:4 (1993), 755–766 | DOI | MR | Zbl
[103] V. D. Stepanov, “The weighted Hardy's inequality for nonincreasing functions”, Trans. Amer. Math. Soc., 338:1 (1993), 173–186 | DOI | MR | Zbl
[104] V. D. Stepanov, “Integral operators on the cone of monotone functions”, J. London Math. Soc. (2), 48:3 (1993), 465–487 | DOI | MR | Zbl
[105] V. D. Stepanov, “On the singular numbers of a class of integral operators”, Russian Acad. Sci. Dokl. Math., 49:3 (1994), 545–547 | MR | Zbl
[106] V. D. Stepanov, “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc. (2), 50:1 (1994), 105–120 | DOI | MR | Zbl
[107] V. D. Stepanov, “Weighted norm inequalities for integral operators and related topics”, Nonlinear analysis, function spaces and applications, Proceedings of Spring School (Prague, 1994), v. 5, Prometheus, Prague, 1994, 139–175 | MR | Zbl
[108] V. D. Stepanov, Nekotorye voprosy teorii integralnykh operatorov svertki, Dalnauka, Vladivostok, 2000, 228 pp. | MR
[109] V. D. Stepanov, “On the lower bounds for Schatten–von Neumann norms of certain Volterra integral operators”, J. London Math. Soc. (2), 61:3 (2000), 905–922 | DOI | MR | Zbl
[110] V. D. Stepanov, “On a supremum operator”, Spectral theory, function spaces and inequalities, Oper. Theory Adv. Appl., 219, Birkhäuser/Springer Basel AG, Basel, 2012, 233–242 | DOI | MR | Zbl
[111] V. D. Stepanov, S. Yu. Tikhonov, “Two-weight inequalities for the Hilbert transform on monotone functions”, Dokl. Math., 83:2 (2011), 241–242 | DOI | MR | Zbl
[112] V. D. Stepanov, S. Yu. Tikhonov, “Two power-weight inequalities for the Hilbert transform on the cones of monotone functions”, Complex Var. Elliptic Equ., 56:10-11 (2011), 1039–1047 | DOI | MR | Zbl
[113] V. D. Stepanov, E. P. Ushakova, “Weighted estimates for the integral operators with monotone kernels on a halh-axis”, Sib. Math. J., 45:6 (2004), 1124–1134 | DOI | MR | Zbl
[114] V. D. Stepanov, E. P. Ushakova, “On the geometric mean operator with variable limits of integration”, Proc. Steklov Inst. Math., 260:1 (2008), 254–278 | DOI | MR | Zbl
[115] V. D. Stepanov, E. P. Ushakova, “Alternative criteria for the boundedness of Volterra integral operators in Lebesgue spaces”, Math. Inequal. Appl., 12:4 (2009), 873–889 | DOI | MR | Zbl
[116] V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13:3 (2010), 449–510 | DOI | MR | Zbl
[117] J. Q. Sun, “The modular inequalities for a class of convolution operators on monotone functions”, Proc. Amer. Math. Soc., 125:8 (1997), 2293–2305 | DOI | MR | Zbl
[118] A. A. Vasil'eva, “Estimates for the widths of weighted Sobolev classes”, Sb. Math., 201:7 (2010), 947–984 | DOI | DOI | MR | Zbl