Hamiltonian-minimal Lagrangian submanifolds in toric varieties
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 392-394 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2013_68_2_a7,
     author = {A. E. Mironov and T. E. Panov},
     title = {Hamiltonian-minimal {Lagrangian} submanifolds in toric varieties},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {392--394},
     year = {2013},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_2_a7/}
}
TY  - JOUR
AU  - A. E. Mironov
AU  - T. E. Panov
TI  - Hamiltonian-minimal Lagrangian submanifolds in toric varieties
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 392
EP  - 394
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_2_a7/
LA  - en
ID  - RM_2013_68_2_a7
ER  - 
%0 Journal Article
%A A. E. Mironov
%A T. E. Panov
%T Hamiltonian-minimal Lagrangian submanifolds in toric varieties
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 392-394
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2013_68_2_a7/
%G en
%F RM_2013_68_2_a7
A. E. Mironov; T. E. Panov. Hamiltonian-minimal Lagrangian submanifolds in toric varieties. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 392-394. http://geodesic.mathdoc.fr/item/RM_2013_68_2_a7/

[1] Yong-Geun Oh, Math. Z., 212:1 (1993), 175–192 | DOI | MR | Zbl

[2] A. E. Mironov, Matem. sb., 195:1 (2004), 89–102 | DOI | MR | Zbl

[3] A. E. Mironov, T. E. Panov, Funkts. analiz i ego pril., 47:1 (2013), 47–61 | DOI

[4] Yuxin Dong, Nonlinear Anal., 67:3 (2007), 865–882 | DOI | MR | Zbl