Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 349-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Uniform attractors are investigated for dynamical systems corresponding to non-autonomous partial differential equations. The problem reduces to an analysis of families of dynamical processes (when the original equation is defined on the whole time axis) or dynamical semiprocesses (when it is defined on a half-axis). Results are established on the existence of uniform global attractors for families of processes and semiprocesses. The structure of attractors for non-autonomous equations with translation-compact symbols is investigated. Conditions are found under which attractors of semiprocesses reduce to attractors of corresponding processes. An important special case of equations with asymptotically almost periodic terms is examined. Several examples of non-autonomous equations of mathematical physics are considered, uniform global attractors are constructed in these examples, and their structure is studied. Bibliography: 28 titles.
Keywords: dynamical processes and semiprocesses, translation-compact functions, uniform global attractors, non-autonomous partial differential equations.
@article{RM_2013_68_2_a4,
     author = {V. V. Chepyzhov},
     title = {Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {349--382},
     year = {2013},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_2_a4/}
}
TY  - JOUR
AU  - V. V. Chepyzhov
TI  - Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 349
EP  - 382
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_2_a4/
LA  - en
ID  - RM_2013_68_2_a4
ER  - 
%0 Journal Article
%A V. V. Chepyzhov
%T Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 349-382
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2013_68_2_a4/
%G en
%F RM_2013_68_2_a4
V. V. Chepyzhov. Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 349-382. http://geodesic.mathdoc.fr/item/RM_2013_68_2_a4/

[1] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992, x+532 pp. | MR | MR | Zbl | Zbl

[2] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988, xvi+500 pp. | DOI | MR | Zbl

[3] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp. | MR | Zbl

[4] O. Ladyzhenskaya, Attractors for semigroups and evolution equations, Lezioni Lincei, Cambridge Univ. Press, Cambridge, 1991, xii+73 pp. | DOI | MR | Zbl

[5] I. D. Chueshov, Introduction to the theory of infinite-dimensional dissipative systems, University Lectures in Contemporary Mathematics, Acta, Kharkiv, 2002, 418 pp. | MR | Zbl | Zbl

[6] A. Haraux, Systèmes dynamiques dissipatifs et applications, Rech. Math. Appl., 17, Masson, Paris, 1991, xii+132 pp. | MR | Zbl

[7] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp. | MR | Zbl

[8] G. R. Sell, Y. You, Dynamics of evolutionary equations, Appl. Math. Sci., 143, Springer-Verlag, New York, 2002, xiv+670 pp. | DOI | MR | Zbl

[9] V. V. Chepyzhov, M. I. Vishik, “Non-autonomous dynamical systems and their attractors”, Appendix in the book: M. I. Vishik, Asymptotic behaviour of solutions of evolutionary equations, Lezioni Lincee, Cambridge Univ. Press, Cambridge, 1992, 112–150 | MR | Zbl

[10] V. V. Chepyzhov, M. I. Vishik, “Nonautonomous evolution equations and their attractors”, Russian J. Math. Phys., 1:2 (1993), 165–190 | MR | Zbl

[11] V. V. Chepyzhov, M. I. Vishik, “Attractors of non-autonomous dynamical systems and their dimension”, J. Math. Pures Appl. (9), 73:3 (1994), 279–333 | MR | Zbl

[12] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl

[13] V. V. Chepyzhov, M. I. Vishik, “Attractors of non-autonomous evolution equations with translation-compact symbols”, Partial differential operators and mathematical physics (Holzhau, 1994), Oper. Theory Adv. Appl., 78, Birkhäuser, Basel, 1995, 49–60 | MR | Zbl

[14] V. V. Chepyzhov, M. I. Vishik, “Non-autonomous evolutionary equations with translation-compact symbols and their attractors”, C. R. Acad. Sci. Paris Sér. I Math., 321:2 (1995), 153–158 | MR | Zbl

[15] V. V. Chepyzhov, M. I. Vishik, “Attractors of non-autonomous equations of mathematical physics with translation compact symbols”, in “Joint sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics and of the Moscow Mathematical Society”, Russian Math. Surveys, 50:4 (1995), 802–803 | DOI

[16] L. Amerio, G. Prouse, Almost-periodic functions and functional equations, Van Nostrand Reinhold Co., New York–Toronto, ON–Melbourne, 1971, viii+184 pp. | MR | Zbl

[17] B. M. Levitan, V. V. Zhikov, Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978, 204 pp. | MR | Zbl

[18] V. V. Chepyzhov, M. Conti, V. Pata, “A minimal approach to the theory of global attractors”, Discrete Contin. Dyn. Syst., 32:6 (2012), 2079–2088 | DOI | MR | Zbl

[19] V. Pata, S. Zelik, “Attractors and their regularity for 2-D wave equation with nonlinear damping”, Adv. Math. Sci. Appl., 17:1 (2007), 225–237 | MR | Zbl

[20] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach Science Publishers, New York–London, 1963, xiv+184 pp. | MR | MR | Zbl | Zbl

[21] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, revised edition, North-Holland, Amsterdam–New York, 1979, x+519 pp. | MR | MR | Zbl | Zbl

[22] P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1988, x+190 pp. | MR | Zbl

[23] O. A. Ladyzhenskaya, “On the determination of minimal global attractors for the Navier–Stokes and other partial differential equations”, Russian Math. Surveys, 42:6 (1987), 27–73 | DOI | MR | Zbl

[24] J. Arrieta, A. N. Carvalho, J. K. Hale, “A damped hyperbolic equation with critical exponent”, Comm. Partial Differential Equations, 17:5-6 (1992), 841–866 | DOI | MR | Zbl

[25] E. Feireisl, “Attractors for wave equations with nonlinear dissipation and critical exponent”, C. R. Acad. Sci. Paris Sér. I Math., 315:5 (1992), 551–555 | MR | Zbl

[26] M. Grasselli, V. Pata, “On the damped semilinear wave equation with critical exponent”, Dynamical systems and differential equations (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst., 2003, suppl., 351–358 | MR | Zbl

[27] V. Pata, S. Zelik, “A remark on the damped wave equation”, Commun. Pure Appl. Anal., 5:3 (2006), 611–616 | DOI | MR | Zbl

[28] S. M. Borodich, “On behavior as $t\to +\infty$ of solutions of some nonautonomous equations”, Moscow Univ. Math. Bull., 45:6 (1990), 19–21 | MR | Zbl