On quantum averaging, quantum KAM, and quantum diffusion
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 335-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For non-autonomous Hamiltonian systems and their quantizations this paper discusses properties of the quantized systems whose classical analogues constitute the subject of KAM theory and related areas: averaging theory, Nekhoroshev stability, and diffusion. Bibliography: 31 titles.
Keywords: infinite-dimensional KAM theory, quantum adiabatic theorem.
Mots-clés : quantum diffusion
@article{RM_2013_68_2_a3,
     author = {S. B. Kuksin and A. I. Neishtadt},
     title = {On quantum averaging, {quantum~KAM,} and quantum diffusion},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {335--348},
     year = {2013},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_2_a3/}
}
TY  - JOUR
AU  - S. B. Kuksin
AU  - A. I. Neishtadt
TI  - On quantum averaging, quantum KAM, and quantum diffusion
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 335
EP  - 348
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_2_a3/
LA  - en
ID  - RM_2013_68_2_a3
ER  - 
%0 Journal Article
%A S. B. Kuksin
%A A. I. Neishtadt
%T On quantum averaging, quantum KAM, and quantum diffusion
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 335-348
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2013_68_2_a3/
%G en
%F RM_2013_68_2_a3
S. B. Kuksin; A. I. Neishtadt. On quantum averaging, quantum KAM, and quantum diffusion. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 335-348. http://geodesic.mathdoc.fr/item/RM_2013_68_2_a3/

[1] V. I. Arnold, “Conditions for the applicability, and estimate of the error, of an averaging method for systems which pass through states of resonance in the course of their evolution”, Soviet Math. Dokl., 6 (1965), 331–334 | MR | Zbl

[2] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, 2nd ed., Springer-Verlag, New York, 1989, xvi+508 pp. | DOI | MR | MR | Zbl | Zbl

[3] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, 3rd rev. ed., Springer-Verlag, Berlin, 2006, xiv+518 pp. | DOI | MR | MR | Zbl | Zbl

[4] J. E. Avron, A. Elgert, “Adiabatic theorem without a gap condition”, Comm. Math. Phys., 203:2 (1999), 445–463 | DOI | MR | Zbl

[5] D. Bambusi, S. Graffi, “Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods”, Comm. Math. Phys., 219:2 (2001), 465–480 | DOI | MR | Zbl

[6] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Engrg. Math., 55:1-4 (2006), 183–237 | DOI | MR | Zbl

[7] M. V. Berry, “The adiabatic limit and the semiclassical limit”, J. Phys. A: Math. Gen., 17:6 (1984), 1225–1233 | DOI | MR

[8] M. Born, V. Fock, “Beweis des Adiabatensatzes”, Z. Phys., 51:3-4 (1928), 165–180 | DOI | Zbl

[9] V. A. Borovikov, Polya v plavno neregulyarnykh volnovodakh i zadacha o variatsii adiabaticheskogo invarianta, Preprint No 99, IPM AN SSSR, 1978, 66 pp. | MR

[10] J. Bourgain, “Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential”, Comm. Math. Phys., 204:1 (1999), 207–247 | DOI | MR | Zbl

[11] J. Bourgain, “On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potentials”, J. Anal. Math., 77:1 (1999), 315–348 | DOI | MR | Zbl

[12] J.-M. Delort, “Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds”, Int. Math. Res. Not. IMRN, 2010:12 (2010), 2305–2328 | DOI | MR | Zbl

[13] P. A. M. Dirac, “The adiabatic invariance of the quantum integrals”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 107 (1925), 725–734 | DOI | Zbl

[14] L. H. Eliasson, “Ergodic skew-systems on $\mathbb T^d\times SO(3,\mathbb R)$”, Ergodic Theory Dynam. Systems, 22:5 (2002), 1429–1449 | DOI | MR | Zbl

[15] H. L. Eliasson, S. B. Kuksin, “On reducibility of Schrödinger equations with quasiperiodic in time potentials”, Comm. Math. Phys., 286:1 (2009), 125–135 | DOI | MR | Zbl

[16] L. H. Eliasson, S. B. Kuksin, “KAM for the nonlinear Schrödinger equation”, Ann. of Math. (2), 172:1 (2010), 371–435 | DOI | MR | Zbl

[17] B. Grébert, L. Tomann, “KAM for the quantum harmonic oscillator”, Comm. Math. Phys., 307:2 (2011), 383–427 | DOI | MR | Zbl

[18] A. Joye, C.-E. Pfister, “Superadiabatic evolution and adiabatic transition probability between two nondegenerate levels isolated in the spectrum”, J. Math. Phys., 34:2 (1993), 454–479 | DOI | MR | Zbl

[19] M. V. Karasev, “New global asymptotics and anomalies for the problem of quantization of the adiabatic invariant”, Funct. Anal. Appl., 24:2 (1990), 104–114 | DOI | MR | Zbl

[20] T. Kato, “On the adiabatic theorem of quantum mechanics”, J. Phys. Soc. Jpn., 5 (1950), 435–439 | DOI

[21] S. B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Math., 1556, Springer-Verlag, Berlin, 1993, xxviii+101 pp. | DOI | MR | Zbl

[22] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 1, Mechanics, Pergamon Press, Oxford–London–New York–Paris; Addison–Wesley Publishing Co., Inc., Reading, MA, 1960, vii+165 pp. | MR | MR | Zbl | Zbl

[23] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp. | MR | Zbl

[24] Jianjun Liu, Xiaoping Yuan, “Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient”, Comm. Pure Appl. Math., 63:9 (2010), 1145–1172 | DOI | MR | Zbl

[25] P. Lochak, C. Meunier, Multiphase averaging for classical systems. With applications to adiabatic theorems, transl. from the French by H. S. Dumas, Appl. Math. Sci., 72, Springer-Verlag, New York, 1988, xii+360 pp. | DOI | MR | Zbl

[26] V. P. Maslov, M. V. Fedoryuk, Semi-classical approximation in quantum mechanics, Math. Phys. Appl. Math., 7, D. Reidel Publishing Co., Dordrecht–Boston, MA, 1981, ix+301 pp. | MR | MR | Zbl | Zbl

[27] A. I. Neĭshtadt, “Capture into resonance and scattering on resonances in two-frequency systems”, Proc. Steklov Inst. Math., 250 (2005), 183–203 | MR | Zbl

[28] N. N. Nekhoroshev, “An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems”, Russian Math. Surveys, 32:6 (1977), 1–65 | DOI | MR | Zbl

[29] G. Nenciu, “Linear adiabatic theory. Exponential estimates”, Comm. Math. Phys., 152:3 (1993), 479–496 | DOI | MR | Zbl

[30] J. Sjöstrand, “Projecteurs adiabatiques du point de vue pseudodifférentciel”, C. R. Acad. Sci. Paris Sér. I Math., 317:2 (1993), 217–220 | MR | Zbl

[31] W.-M. Wang, “Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations”, Comm. Partial Differential Equations, 33:12 (2008), 2164–2179 | DOI | MR | Zbl